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Abstract. Shape discretization through union of weighted points or balls appears as a common representation
in different fields of computer graphics and geometric modeling. Among others, it has been very successful
for implicit surface reconstruction with radial basis functions, molecular atomic models, fluid simulation from
particle systems and deformation tracking with particle filters. These representations are commonly generated
from real measurements or numerical computations, which may require filtering and smoothing operations.This
work proposes a smoothing mechanism for union of balls that tries to inherit from the scale-space properties of bi-
dimensional curvature motion: it avoids disconnecting the shape, prevents self-intersection, regularly decreases the
area and convexifies the shape. The smoothing is computed iteratively by moving each ball of the union according
to a combination of projected planar curvature motions. Experiments exhibits nice properties of this scale-space.
Keywords: Union of Balls. Smoothing. Scale Spaces. Curvature Motion.

Figure 1: Iterations of smoothing of a union of balls on a meta-ball model of an octopus, at every 8 iterations: the proposed scale space (top),
compared to a gaussian filtering along the medial axis (middle) and spatial gaussian filtering (bottom) : our smoothing achieves progressive
detail remotion.

1 Introduction
Although in Computer Graphics shapes are predomin-

antly represented by triangulated surfaces, volumetric rep-
resentations are spreading quickly for a wide range of ap-
plications. For example, particle-based fluid simulations of-
fer excellent trade-offs for games and animation [18], and
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point sets models are easily acquired by 3d scanning pro-
cesses [14], and their approximations can be implicitly
defined with radial basis functions [5, 19, 21]. In particular,
the shape model of union of balls is a natural representation
for specific applications such as molecular simulation [13],
low-density fluids [17] and shape skeletons [2, 1, 11]. In such
applications however, the union of balls models commonly
contain noise and redundancies. There is thus a need for tools
like simplification, smoothing or multi-resolution adapted to
the union of balls model. In particular, scale-spaces gener-
ated by successive smoothing help in shape analysis.
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In this work, we propose a smoothing scheme for union
of balls inspired by curvature motions. The planar curvature
motion smoothes curves with very desirable scale-space
properties: it does not create intersection or self-intersections
nor does it cut the curve, the curve becomes convex in finite
time and at the end the region becomes close to a disk [9].
Those scale-space properties are not achieved in space by
gaussian filters, while the proposed method exhibits better
properties (see Figure 1).

Related work

To our knowledge, very few works have proposed geo-
metric tools for generating scale-spaces of union of balls,
although topological schemes based on α-shapes and per-
sistence have been well studied [8, 7]. For the particular
case of radial basis function (RBF), more concise genera-
tions have been proposed [21], placing the poles of the RBF
on the Voronoı̈ centers of the shape. Proper simplification
algorithms were devised mainly for point cloud representa-
tions instead of balls [20]. In particular, curvature motion is
used for point set surface simplifications [12], while we work
directly on the union of balls.

The most related approaches are medial-axis based sim-
plification. On one side, geometric approaches adaptively
prunes the medial axis [23] to remove spurious branches.
This process is highly non-continuous and limited to very
high frequencies smoothing. On the other side, topological
approaches [6] progressively reduce all the branches of the
medial axis. The smoothing effect is continuous but low fre-
quencies may disappear before high ones. Our approach is
based on bi-dimensional curvature motions, which naturally
generates a well-behaved scale-space, i.e. removes high fre-
quencies in a progressive and smooth order.

Curvature motion smoothly evolves each point p of a
curve along the normal at p proportionally to the curvature at
that point. It is widely used for multi-resolution representa-
tions of plane regions [16, 22]. For surfaces, the mechanism
is similar, although many curvatures co-exist, in particular
mean, minimal and maximal curvatures. Very few proper-
ties of three-dimensional curvature motions are known, and
in particular no formulation has been devised as differential
equations on the medial axis. While counter-examples ex-
ist for mean curvature motion [4], experiments suggest good
properties of the minimal curvature motion [24]. However in
two dimensions, many properties have been stated and effi-
cient formulations have been adapted. In particular, this work
is based on the discretization of curvature motion for union
of disks [15].

Contributions

We propose a smoothing scheme for union of balls that
practically generates a well-behaved scale-space: it avoids
intersections and disconnections and progressively removes
details of the shape. We use a heuristic inspired by curvature
motion: Since curvature motion for union of balls is well
understood in the plane but not in space, we propose to

approximate three-dimensional motions from their planar
projections. At a given ballB, we intersect the union of balls
with some equatorial planes of B and apply planar curvature
motion on the intersected disks [15]. The movement of B
is then computed as the mean, minimal or maximal planar
motion, which should approximate three-dimensional mean,
minimal or maximal curvature motion. To avoid computing
the movement for all planes, we use the adjacencies of a
medial ball B to define significant local planes. We further
propose a simple sampling correction scheme that ensures
numerical stability and avoids disconnecting the shape. This
work is an extension of the M.Sc dissertation of Cynthia
Ferreira [10] and Betina Vath [27], advised respectively by
Marcos Craizer and Thomas Lewiner at PUC-Rio.

2 Preliminaries
In this section, we will review the definition of medial

axis and how to compute it for union of balls, following
the work of Amenta and Kolluri [1]. Then, we review the
formulation of Teixeira [24, 25, 26] for the curvature motion
on the medial axis for the bi-dimensional case. We then
quickly expose how to implement these equations for union
of balls, as done by Lewiner et al. [15].

(a) Union of balls

In this work, we use the notation for union of balls of
the work of Amenta and Kolluri [1]. This notation denotes
identically a ball B of center pB and radius rB , as the
geometric set of points {p s.t. ‖pBp‖ ≤ rB}, or as the
point pB weighted by rB . This identification allows to write
indifferently U for the geometric union of the balls, which is
suitable for describing shapes and medial axis, or for the set
of weighted points, which gives support for constructing α–
shape or Voronoı̈ diagrams. When the context makes it clear,
we denote pB by B.

(b) Medial axis

A union of balls can be concisely described in terms of
its medial axis. The medial axis of a shape is the locus of the
centers of balls that are tangent to the shape in two or more
points, where all such balls are contained in the shape (see
Figure 2). The distance r from a point M of the medial axis
to the boundary of the shape is called the radius function.
For smooth curves, r is a smooth function of the medial axis
point. Generically, the medial axis of a discrete shape is a
finite simplicial complex, i.e. a collection of vertices, open
edges and triangles that do not intersect.

Following Amenta and Kolluri [1], the medial axis of a
union of balls U can be computed from the α–shape of U and
the Voronoı̈ diagram of the external intersection point (see
Figure 2(c)). The external intersections are computed from
the α-shape of U with α = 0. More precisely, a triangle of
the α-shape links three balls that intersect transversally. The
intersections are external if the triangle is singular (without
adjacent tetrahedron), and only one intersection is external if
the edge is on the boundary of the α-shape (see Figure 2(a)).

The corresponding work was published in the proceedings of the Sibgrapi 2009. IEEE Press, 2009.
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3 Scale-space for union of 3d balls

(a) α-shape and the external intersections.

(b) Voronoı̈ diagram of the intersections.

(c) Medial axis: singular part from the α-shape and
regular part from the Voronoı̈ diagram.

Figure 2: Main steps for computing the medial axis of a union of
balls.

Then, the medial axis of U is the intersection of the α-
shape with the Voronoı̈ diagram of the obtained external
intersections (see Figure 2(b)), together with the singular
part of the α-shape.

(c) 2D curvature motion on the medial axis

The curvature motion of a curve is obtained by moving
each point p of a smooth curve along its normal N(p). The
magnitude of the movement is proportional to the curvature
K(p) at point p. This can be translated into the following
differential equation: pt = K(p) · N(p), where pt = ∂p

∂t
denotes the time derivative.

This motion deforms the curve, and thus changes the
medial axis of its interior and the associated radius function
r. The differential equation of this medial axis evolution
has been stated by Teixeira [24]. In particular, for a regular
point M of the medial axis (i.e. neither an end point nor a
bifurcation), it can be written [25]: Mt =

K(1−rv
2)

(1−rv
2−rrvv)2−r2K2(1−rv

2)
N

rt =
rK2(1−rv

2)+rv(1−rv
2−rrvv)

(1−rv
2−rrvv)2−r2K2(1−rv

2)

where the medial axis M(v) and the radius function r(v)
are parameterized by the arc–length v, and N and K are the
normal and the curvature at the regular pointM , respectively.

Figure 3: The 2D curvature motion for union of disk deforms
bifurcation balls as means of regular motions (green lines).

For an end point M of the medial axis, the equation can
be written in terms of the arc length s, the derivative of the
curvature K and the normal N of the boundary curve at the
tangent point with the ball centered at M [26, 15]:{

Mt = −KssN
rt = −Kss −K

(d) 2D curvature motion for union of disks

The above equations can be implemented for union of
balls [15], following a classification of the disks based on
their adjacency in the medial axis (see Figure 3). The easy
parts of union of balls is that their medial axis can be exactly
computed, as described at the beginning of this section, and
that the radius function r is simply the radius of the balls that
are part of the medial axis. The estimates for the curvature of
the medial axis, the second derivatives of the radius func-
tion naturally follow. The second derivative of the boundary
curvature can be obtained by ellipse approximations at an
end ball, when considering the neighboring balls in the α-
shape [15]. The hard part remains numerical issues, such as
noisy vs. clean end ball detection, sampling conditions and
the handling of topological changes and bifurcation cases.

This last case is interesting for the present 3D extension.
According to Teixeira’s formulation for bifurcations [26],
the movement at the intersection of three branches of the
medial axis can be approximated as the weighted mean of the
movement of each branch. This strategy is at the base of our
approach for approximate 3D curvature motion introduced
in the next section.

3 Scale-Space from Curvature Motion
We aim at smoothing union of balls, mimicking curvature

motion (see Figure 4). One option would be to devise formu-
las of the induced motion onto the medial axis, like stated by
Teixeira [24] in 2D (see section 2(c)). However, such calcu-
lus would be extremely heavy due to the many singularities
of 3D medial axis. We thus propose to build our smoothing
filter directly on top of 2D curvature motion, which is much
more studied.

Observing the nature of the equations of section 2(c), the
curvature motion deforms a point of the medial axis along
the normal at the medial axis. For the 3D case, we will use a
similar approach, moving the medial axis in a direction per-
pendicular to the medial curve. Moreover, similarly to the
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Figure 4: Our scale-space smoothing on a spirally shaped, after 1, 20, 40, 60 and 80 iterations: the movement avoids self-intersection, even
in delicate cases. The lines show the medial axis edges along the defomartion.

bifurcations in 2D, we compute our scale-space by combina-
tions of simpler curvature-based deformations. In particular
at vertices of the medial axis, where only a normal cone can
be defined, we smooth the surrounding shape from the mo-
tion in planes containing a normal of the cone. The different
combinations of these planar motions lead to approximations
of different motions, e.g. mean, minimal, maximal curvature
motions.

(a) Algorithm overview

This leads to the following algorithm: starting from a
union of balls U , we compute its medial axis M, and in
particular the adjacency relations of the balls inside this
medial axis (see Figure 5). For each ball B of U , we select
a set of equatorial planes {Pi} for B containing a normal
of the normal cone of M at pB (see section 3(b)). For
each plane Pi, we intersect U with Pi, generating a set of
disks (see Figure 6), and we apply the 2D curvature motion
on this set, as described in section 2(d). This moves the
center pB of B inside Pi and changes its radius, leading to
a new ball Bi. We then combine these planar movements
from B to Bi to obtain the new position and radius of B
in 3D (see section 3(c)). Similarly to the 2D case, we can
optionally impose a sampling condition on the movement
(see section 3(d)). To avoid testing for each single equatorial
plane Pi, we select sample planes as described next.

Figure 5: Classification of the balls according to their adjacency
in the medial axis.

Figure 6: The motion of the central ball is a combination of its
motion in planar cuts.

(b) Ball classification and planes selection

From the adjacency relations in the medial axis M, we
can classify each ball B as follows (see Figure 5):

– isolated when B has no neighbor in M. This occurs
for example when a ball is in the interior of the shape,
but it does not belong to the medial axis, or when the
shape is reduced to that ball. In that case, the radius of
B is decreased proportionally to the time step and no
plane is needed.

– end-ball when B has only one neighbor B′. This im-
plies thatB is on the singular part of M, eitherB is on
a symmetric part of the shape (end of a branch) or it
can be interpreted as a noisy geometry on the boundary
of the shape [6]. The planes Pi must then contain the
singular edge pBpB′ . Since the shape is locally iso-
tropic near pB , we choose planes to regularly sample
all rotations, for example at 0, 45◦, 90◦ and 135◦ with
respect to a fixed direction.

– elbow when B is on the singular part of M and has
two adjacent neighbors B′ and B′′, i.e., in the middle
of a branch. If pB , pB′ and pB′′ are colinear, then we
consider the same planes as the end-ball case. If they
are not colinear, we essentially have a planar case, and
we choose two planes, one passing through pB , pB′

and pB′′ and a perpendicular one: the bisector plane
of the angle pB′pBpB′′ .

– regular when B is on the interior of M. In that case,
all adjacent edges belong to two triangles of the medial
axis. This case is similar to 2D bifurcation, and we can
average the separate computation of each branch. We
thus compute, for each adjacent triangle pBpB′pB′′ ,
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Figure 7: Gaussian filters in space (top) and along the medial axis (bottom) on the same example as Figure 4 fail in avoiding self-intersection.

two planes Pi passing through pB and perpendicular
to the triangle, one containing pB′ and the other con-
taining pB′′ .

– border whenB is adjacent to some triangles and even-
tually to boundary triangles and singular edges. In that
case, the planes are computed considering all pairs
of adjacent balls (including triangles) as in the elbow
case. For each adjacent triangle, we also compute the
planes described in the regular case.

(c) Averaging of planar motions

For each ball B of U and for each plane Pi computed
above, except for the isolated case, we compute the intersec-
tion of U with Pi, generating a union of disk Ui. Applying
the 2D curvature motion on Ui results in a new ballBi whose
center belongs to plane Pi or in the removal of the projection
of B if it is considered noisy or spurious in Ui. If B is re-
moved in all the planes, it is removed from U . If not, the new
position of B is computed from the Bi’s as follows.

For the mean curvature-like smoothing, the new ball B1

is the barycenter of the Bi’s. For the minimal (respectively
maximal) curvature-like smoothing, B1 will be the closest
(respectively farthest) ball Bi from B. Other motions can
be devised, for example a sort of median curvature motion
taking for B1 the ball Bi such that ‖pBpBi‖ is the median
of the distances ‖pBpBj‖, using the difference of ball radius
in case of ties (see Figure 11).

Finally, to optimize the process, we do not use the whole
intersection Ui for the 2D motion, since it would lead to
a cubic complexity (considering the 2D Voronoı̈ diagram
linear and the 3D medial axis quadratic [3]). Instead, for
each ball B in M and each of its planes Pi, we compute
the intersections of U with only balls k-adjacent to B in M
(i.e. adjacent to a ball (k−1)-adjacent).

(d) Re-sampling

It is well known that, in the differential case, three-
dimensional mean curvature motions can cut the original
shape [4]. This can be undesirable for smoothing and we can
avoid it by imposing a sampling condition on the union of
balls, similarly to the 2D case [15]. To do so, we remove two
adjacent balls on the medial axis when they are closer than a
factor ε = 0.05 of their minimal radius. Similarly, when two
adjacent balls in M may disconnect, we insert a new ball at
the middle of them, with radius the average of their radius
(see Figure 8). To ensure that the shape does not disconnect
and to avoid computing the medial axis once more, we use
the medial axis from before the movement to the positions of
the balls after the movement.

Figure 8: Sampling condition on the dumbbell shape after 3 and 50
iterations.

4 Experimental Results
The above algorithm has been implemented using the

CGAL library for the α-shape and the Voronoı̈ diagram [28].
The proposed smoothing of union of balls intends to gen-

erate a well-behaved scale space. Actually, the main proper-
ties of our approach are inherited from the planar curvature
motion: the movement does not create self-intersections
(see Figures 4 and 7) ; it smoothly convexifies the shapes
(see Figure 1) ; and the shape tends to a ball (see Fig-
ure 10). However, similarly to the three-dimensional mean
curvature motion, the movement can cut the shape. This is
a well-known behavior, evidenced on the classical dumbbell
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Figure 9: The averaging of local bi-dimensional movements is robust even in completely degenerated cases.

shape (see Figure 11(middle)). As experimented in Teixeira’s
thesis [24], the minimal curvature motion avoids this prob-
lem on the dumbbell (see Figure 11(left)). Finally, the max-
imal curvature motion is much more sensitive to small asym-
metries, such as the initial shape (see Figure 11(right)). Cuts
can also be avoided by the resampling proposed at sec-
tion 3(d), which also smoothens the shape contour and turns
it more symmetric (see Figure 8).

Degenerate cases may occur for perfectly symmetric
shapes, since the medial axis becomes singular, i.e. M is
made only of edges, and colinear centers for the elbow case.
Even in this case, the proposed method robustly smoothens
the union of balls (see Figure 9).

We tested the smoothing on real examples, such as meta-
balls models for an octopus (see Figure 1) and an RBF model
of a fish (see Figure 10), generated from the interior poles of
a sparse surface reconstruction [19].

The main limitation of our method is the execution time
(see Table 1), where the bottleneck is the initial α-shape
computation and the actual implementation that re-computes
all the structure for each iteration. However, simpler ap-
proaches fail to generate a correct scale-space. To exemplify
this, we compared with two gaussian filters: a direct filtering
in space, moving balls from position B to λB̄ + (1 − λ)B,
where B̄ is the average position of the neighboring balls.
This average is weighted by a gaussian function of the dis-
tance, and the radius is updated in the same way. The second
filter performs the same operation, but computing the dis-
tance along the medial axis. This last strategy mainly differs
from ours in the movement magnitude of each ball, but the
balls generally displace along the normal of the medial axis.
We tested those filters on the octopus meta-ball model (see
Figure 1), with λ = 0.05 and the gaussian function para-
meter σ set to 10% of the bounding box of the model. We
also tested those filters on the spiral model (see Figure 7)
with λ = 0.3 and σ = 30%. As compared to our proposal,
those simpler movements are much faster (10% of our exe-
cution time), but create self-intersections and disconnect the
shape.

5 Conclusion

In this work, we propose a smoothing of union of
balls by a heuristic based on the medial axis and inspired
by bi-dimensional curvature motion. The proposed scheme
achieves some of the nice scale-space properties of curvature
motion. Moreover, it is robust to degeneracies, and can be
easily completed to ensure regular sampling.

Table 1: Sizes (number of balls) and timing results of smoothing
the models illustrated in this paper.

Figures Model Size Time per iteration
Figure 1 octopus 103 0.3 s/it
Figure 4 spiral 101 0.7 s/it

Figure 8, Figure 11 dumbbell 21 0.1 s/it
Figure 9 ellipse 20 0.1 s/it
Figure 10 fish 204 1.1 s/it

sibgrapi 193 0.2 s/it

As in the bi-dimensional case the averaging at bifurcation
points must be weighted, we believe that such results may
be improved by a correct evaluation of the weight of each
plane. However, this will not influence the smoothing based
on the minimal and maximal curvature motions. Another
direction for future works would be affine curvature motions
for anisotropic smoothing.
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