gluSphere NAME gluSphere - draw a sphere C SPECIFICATION void gluSphere(GLUquadricObj *qobj, GLdouble radius, GLint slices, GLint stacks) PARAMETERS qobj Specifies the quadrics object (created with gluNewQuadric).

qobj Specifies the quadrics object (created with **gluinewQua**

radius Specifies the radius of the sphere.

slices Specifies the number of subdivisions around the *z* axis (similar to lines of longitude).

stacks Specifies the number of subdivisions along the z axis (similar to lines of latitude).

DESCRIPTION

gluSphere draws a sphere of the given radius centered around the origin. The sphere is subdivided around the *z* axis into slices and along the *z* axis into stacks (similar to lines of longitude and latitude). If the orientation is set to **GLU_OUTSIDE** (with **gluQuadricOrientation**), then any normals generated point away from the center of the sphere. Otherwise, they point toward the center of the sphere.

If texturing is turned on (with **gluQuadricTexture**), then texture coordinates are generated so that t ranges from 0.0 at z = -radius to 1.0 at z = radius (t increases linearly along longitudinal lines), and s ranges from 0.0 at the +y axis, to 0.25 at the +x axis, to 0.5 at the -y axis, to 0.75 at the -x axis, and back to 1.0 at the +y axis.

gluDisk

NAME

gluDisk - draw a disk C SPECIFICATION

void **gluDisk**(GLUquadricObj *qobj, GLdouble innerRadius, GLdouble outerRadius, GLint slices, GLint loops)

PARAMETERS

qobj	Specifies the quadrics object (created with gluNewQuadric).
innerRadius	Specifies the inner radius of the disk (may be 0).
outerRadius	Specifies the outer radius of the disk.
slices	Specifies the number of subdivisions around the z axis.
loops	Specifies the number of concentric rings about the origin into which the disk is subdivided.

DESCRIPTION

gluDisk renders a disk on the z = 0 plane. The disk has a radius of *outerRadius*, and contains a concentric circular hole with a radius of *innerRadius*. If *innerRadius* is 0, then no hole is generated. The disk is subdivided around the z axis into slices (like pizza slices), and also about the z axis into rings (as specified by *slices* and *loops*, respectively).

With respect to orientation, the +z side of the disk is considered to be "outside" (see

<u>"gluQuadricOrientation</u>"). This means that if the orientation is set to **GLU_OUTSIDE**, then any normals generated point along the +z axis. Otherwise, they point along the -z axis.

If texturing is turned on (with **gluQuadricTexture**), texture coordinates are generated linearly such that where r = outerRadius, the value at (r, 0, 0) is (1, 0.5), at (0, r, 0) it is (0.5, 1), at (-r, 0, 0) it is (0, 5, 0).

gluCylinder

NAME

gluCylinder - draw a cylinder

C SPECIFICATION

void **gluCylinder**(GLUquadricObj *qobj, GLdouble baseRadius, GLdouble topRadius, GLdouble height, GLint slices, GLint stacks)

PARAMETERS

qobj Specifies the quadrics object (created with **gluNewQuadric**).

baseRadius	Specifies the radius of the cylinder at $z = 0$.
topRadius	Specifies the radius of the cylinder at $z = height$.
height	Specifies the height of the cylinder.
slices	Specifies the number of subdivisions around the z axis.
stacks	Specifies the number of subdivisions along the z axis.

DESCRIPTION

gluCylinder draws a cylinder oriented along the z axis. The base of the cylinder is placed at z = 0, and the top at z = height. Like a sphere, a cylinder is subdivided around the z axis into slices, and along the z axis into stacks.

Note that if topRadius is set to zero, then this routine will generate a cone.

If the orientation is set to **GLU_OUTSIDE** (with **gluQuadricOrientation**), then any generated normals point away from the *z* axis. Otherwise, they point toward the *z* axis.

If texturing is turned on (with **gluQuadricTexture**), then texture coordinates are generated so that *t* ranges linearly from 0.0 at z = 0 to 1.0 at z = height, and *s* ranges from 0.0 at the +y axis, to 0.25 at the +x axis, to 0.5 at the -y axis, to 0.75 at the -x axis, and back to 1.0 at the +y axis.

11.1 glutSolidSphere, glutWireSphere

glutSolidSphere and glutWireSphere render a solid or wireframe sphere respectively. Usage

```
void glutSolidSphere(GLdouble radius, GLint
slices, GLint stacks); void glutWireSphere(GLdouble radius,
GLint slices, GLint stacks);
radius
```

The radius of the sphere.

slices

The number of subdivisions around the Z axis (similar to lines of longitude).

stacks

The number of subdivisions along the Z axis (similar to lines of latitude).

Description

Renders a sphere centered at the modeling coordinates origin of the specified radius. The sphere is subdivided around the Z axis into slices and along the Z axis into stacks.

11.2 glutSolidCube, glutWireCube

glutSolidCube and glutWireCube render a solid or wireframe cube respectively. Usage

void glutSolidCube(GLdouble size); void glutWireCube(GLdouble size); Description

glutSolidCube and glutWireCube render a solid or wireframe cube respectively. The cube is centered at the modeling coordinates origin with sides of length size.

11.3 glutSolidCone, glutWireCone

glutSolidCone and glutWireCone render a solid or wireframe cone respectively.
Usage
void glutSolidCone(GLdouble base, GLdouble height,
GLint slices, GLint stacks); void glutWireCone(GLdouble base,
GLdouble height,
GLint slices, GLint stacks);
base

The radius of the base of the cone.

height

The height of the cone.

slices

The number of subdivisions around the Z axis. ${\tt stacks}$

The number of subdivisions along the Z axis.

Description

glutSolidCone and glutWireCone render a solid or wireframe cone respectively oriented along the Z axis. The base of the cone is placed at Z = 0, and the top at Z = height. The cone is subdivided around the Z axis into slices, and along the Z axis into stacks.

11.4 glutSolidTorus, glutWireTorus

glutSolidTorus and glutWireTorus render a solid or wireframe torus (doughnut) respectively.

Usage

```
void glutSolidTorus(GLdouble innerRadius,
GLdouble outerRadius, GLint nsides, GLint rings);
void glutWireTorus(GLdouble innerRadius, GLint nsides, GLint rings);
outerRadius, GLint nsides, GLint rings);
innerRadius
Inner radius of the torus.
```

outerRadius

Outer radius of the torus.

nsides

Number of sides for each radial section.

rings

Number of radial divisions for the torus.

Description

glutSolidTorus and glutWireTorus render a solid or wireframe torus (doughnut) respectively centered at the modeling coordinates origin whose axis is aligned with the Z axis.

11.9 glutSolidTeapot, glutWireTeapot

glutSolidTeapot and glutWireTeapot render a solid or wireframe teapot \checkmark respectively. Usage

```
void glutSolidTeapot(GLdouble size); void glutWireTeapot(GLdouble
size);
```

size

Relative size of the teapot.

Description

glutSolidTeapot and glutWireTeapot render a solid or wireframe teapot respectively. Both surface normals and texture coordinates for the teapot are generated. The teapot is generated with OpenGL evaluators.