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Abstract. We propose and investigate the use of deep models for dy-
namic gesture recognition, focusing on the recognition of dynamic signs of
the Brazilian Sign Language (Libras) from depth data. We evaluate vari-
ants and combinations of convolutional and recurrent neural networks,
including LRCNs and 3D CNNs models. Experiments were performed
with a novel depth dataset composed of dynamic signs representing let-
ters of the alphabet and common words in Libras. An evaluation of the
proposed models reveals that the best performing deep model achieves
over 99% accuracy, and greatly outperforms a baseline method.
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1 Introduction

Sign languages are visual languages used by deaf communities to communi-
cate. Differently from spoken languages, in which grammar is expressed through
sound, sign languages employ hand gestures, movement, orientation of the fin-
gers, arms or body, and facial expressions [2, 5]. However, sign languages are still
very limited as a social inclusion tool, mainly because most hearing individuals
are not knowledgeable in any sign language. Consequently, most deaf people can
only communicate with a very limited part of the population, finding difficulties
to interact in many daily activities.

In the last decade, with improvements on hardware and computer vision
algorithms, real-time recognition of sign languages is becoming feasible. These
novel technologies can enable the communication between deaf and hearing peo-
ple and also potentialize interactions with machines through gestures. While
recognizing simple static signs is an easy and well-established problem for many
machine learning algorithms [4, 12, 1], recognizing words represented by complex
dynamic interactions between hands, arms, body and facial expressions is rather
a difficult task. An intermediate step to achieve a complete solution is developing
robust methods to recognize dynamic signs, i.e. hand poses in movement.

However, very few studies have aimed to recognize dynamic signs of Li-
bras [12,3,11], and none of them investigated deep models such as recurrent
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neural networks. Pizzolato et al. [12] presented a two-layer ANN used for au-
tomatic finger spelling recognition of Libras signs from RGB images. However,
the architecture of the network is a Multi Layer Perceptron (MLP), which is
currently an outdated choice for image classification or dynamic gestures recog-
nition. Moreira et al. [11] use depth data to recognize all letters of the Libras
alphabet, including static and dynamic signs. They also employ neural networks,
but as in the previous, only a general MLP is proposed, requiring the optimiza-
tion of a huge number of weights. Recently, Cardenas and Camara-Chavez [3]
proposed a method that fuses deep learning descriptors to recognize dynamic
gestures, including experiments on Libras. Depth, RGB and skeleton data are
fused in that hybrid approach. Deep features from images are extracted using
straightforward 2D CNNs applied to both depth data and image flow. However,
according to Tran et al. [14], 2D CNNs are not suitable for spatiotemporal fea-
ture learning as recent state-of-the-art architectures, which we investigate in this
work. It is also worth mentioning that the authors of that work suggested the
use of 3D CNNs as future work.

In this paper, we propose to investigate deep models to recognize dynamic
signs of the Brazilian Sign Language (Libras) from depth data. To the best of
our knowledge, deep models based on learning spatiotemporal features have not
been investigated to recognize dynamic signs of Libras. More specifically, we in-
vestigate the use of variants of 3D CNNs, which are capable of learning local
spatiotemporal features [9]; and LRCNs, which can learn long-term spatial fea-
tures dependencies [7]. We present experiments to evaluate the ability of variants
of both architetures to recognize segmented dynamic Libras signs, and compare
them with a baseline method. Another relevant contribution is the acquisition
and publication of a large depth dataset composed of dynamic signs of Libras
that represent letters of the alphabet and common words in Libras. Although
the complete set of dynamic gestures in the Libras language is much higher than
the selected signs, they are all composed by combinations of 46 key handshapes
in movement [13], sharing similarities among them. Thus, the selected set of dy-
namic signs is still valuable to evaluate the proposed architectures. By finding a
very robust deep model to recognize dynamic libras signs, we expect, in a near
future, to build more sophisticated methods that would employ such model to
recognize more complex interactions.

2 Methodology

We first describe the data acquisiton and pre-processing steps. We consider each
dynamic sign as a finite sequence of depth images. In both training and recog-
nition phases, the sequences are preprocessed before being given as input for
the deep models. Depth data is acquired from a Intel RealSense sensor [8] at
640 x 480 spatial resolution, 8 bit depth resolution and 30 frames per second.
Let f = {fi,f2,-.., fjs} be a dynamic sign, where f,[z,y] represents the
depth (distance to the sensor) of the pixel at column z and row y of the tth
image of the sequence. For each image f;, we initially segment the hand from
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the background by first identifying the closest distance d; to the sensor (smallest
value of f;). We consider a depth threshold D ensuring that the hand of most
individuals, performing any hand pose, is not incorrectly extracted or cropped
from the image, even if some parts of the arm are not extracted from the image.
The filtered image ft is given by
ol = {ft[m’y}’ ensarn m
0, ft[.’ll,y] >di+ D.

We achieve excellent results by empirically setting D = 20 cm. Note that, even
if the hand is not perfectly segmented, we expect the neural networks to learn
how to deal with instances of signs containing regions of the arm, for example.

After segmentation, each image is subsampled to 50 x 50 of spatial resolution.
We empirically found that this resolution is sufficient for a human to identify
any sign, and thus we expected the same capability from a neural network.

As the inputs of 3D CNNs are expected to have fixed size, we fix the time
dimension T to match the longest example of our collected data set, which is
T = 40. Instead of oversampling each shorter sequence, we pad them with zero
images to fill up the remaining time steps. In what follows, we describe two
different classes of deep architectures that are capable of learning features of
different nature: 3D-CNNs and LRCNs. We formally describe both, highlighting
the advantages of each one.

2.1 3D CNNs

3D Convolutional Neural Networks were initially proposed to recognize human
actions in surveillance videos [9]. Later, it was found that such networks are
more suitable for spatiotemporal feature learning compared to 2D CNNs, as the
latter loses temporal information of the input video right after every convolution
operation [14].

The input for 3D CNNs are videos where each frame has a single channel
containing depth data with resolution m x n x T, which can be seen as a cube
formed by stacking multiple contiguous frames together. Instead of applying 2D
convolutions in each image, as in the classical 2D CNN approach, 3D convo-
lutions are directly applied to the cube. Thus, the extracted features represent
spatiotemporal information that combines data from different frames. In con-
trast, 2D convolutions may only capture spatial information.

In a 3D convolutional layer, a video (or 3D feature map) f'~! from a previous
layer [ — 1 is given as input and K' different 3D feature maps are computed by
applying K different kernels wfc, jointly with a bias bfq and an activation o, as

fhla,y t] = o((f 1« wi) [z, y, 1] + b) -

As shown in Fig. 1, 3D CNNs follow the same structure of 2D CNNs. In this
work, given an instance of a dynamic sign of Libras, we give the whole depth
video as input to a 3D CNN.
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2.2 LRCN

Long-term Recurrent Convolutional Networks were recently proposed and exper-
imented on three applications involving sequences: activity recognition, image
captioning, and video description [7]. They combine the power of 2D CNNs to
extract relevant spatial features, with LSTMs: a class of recurrent neural net-
works (RNNs) that can learn long-term temporal dependencies. Consequently,
this class of networks is capable of learning dependencies of spatial features over
the time. Advantages of recurrent models include the capability of modelling
complex temporal dynamics; and directly mapping variable-length inputs, such
as videos, to variable-length outputs.

As in classical RNNs, an LSTM unit also has a memory (state) which is
updated at each time step of a sequence. However, differently from RNN, LSTM
learns when to forget and when to update previous states by incorporating in-
formation from the current step. The final output of the network depends on the
last updated state. For more details, see the work of Donahue et al. [7].

Output: dynamic sign
Output: dynamic sign
1 Softmax layer
Soft; 1 P f
s Cth LSTM layer:
Ue units, ReLU activation
Cth dense layer: 1 f f
Uc units, ReLU activation o [3 °
. . °
1 (] b .
. 1st LSTM layer:
: U, units, ReLU activation
1st dense layer: f 1
Uy units, ReLU activation Max pooling (2 x 2)
4 4 Cth 4
Max pooling (2 x 2 x 2) 2D Convolutional block
Cth (F x F) % K, no stride, ReLU activation
3D Convolutional block 4 4 4
(F x F x F) % K, no stride, ReLU activation . H H
f . . .
H Max pooling (2 x 2)
: f 1st f
Max pooling (2 x 2 x 2) 2D Convolutional block
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(F x F x F) % K, no stride, ReLU activation (L] Input: (50 x 50 x 1) eee
Input: (50 x 50 x T' x 1) Depth video: (50 x 50 x 7' x 1)
3D CNN LRCN

Fig.1: 3D CNN architecture (left): the whole depth video is given as input to
convolutional blocks composed of 3D convolutional layers (each one applying
K filters of size F' x F x F), and max pooling layers. Then, flattened features
are given to dense layers that precede a softmax layer, which returns the final
classification. LRCN architecture (right): Frames from the depth video are pro-
cessed independently by 2D convolutional blocks. The extracted feature maps
are flattened and given as input to the LSTM layers, that update their states.
When the last frame is processed, the LSTM states, together with a softmax
layer, are used to give the sign classification as output.
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Differently from the 3D CNNs, LRCNs receive as input one image per step.
Convolutional layers jointly with max pooling layers hierarchically learn fea-
tures at different scales, similarly to 2D CNNs. Then, the extracted features are
flattened and given as input to LSTM layers that update their states and com-
pute partial (until the current time step) outputs. Finally, a dense softmax layer
computes the partial probability.

To classify dynamic signs of Libras, we consider that, for each time step, a
depth image is given as input and a partial probability is computed by the net-
work. However, only the final probability, i.e. the probability distribution given
by the softmax layer after the last image of the sign is processed, is considered
for classification. The complete architecture is shown in Fig. 1.

3 Experiments

In our experiments we use a novel dataset containing dynamic Libras sign ges-
tures, which is publicly available®. Assisted by Libras specialists, we designed
a set of 10 classes representing dynamic signs of Libras: the letters H and J;
and the words “day”, “night”, “enter”, “all”’, “again”, “start”, “course” and
“yours”. The dynamic signs were chosen to satisfy the following requirements:
5 one-handed signs and 5 two-handed signs; all signs should be very distinct, to
increase diversity, except for two pairs of similar signs which are harder to dis-
criminate (“night” and “enter”), to better evaluate the robustness of the models.
For each class, we collected a total of 300 examples of depth videos using the
hardware and specifications described in Section 2. The number of frames per
example varies, and the longest example contains 40 frames. Fig. 2 shows the
first and last frames of one example of each sign.

3.1 Hyper-parameters Optimization and Evaluation

The proposed classes of architectures represent a large number of models defined
by several hyper-parameters. Instead of empirically setting values as many pre-
vious works, we optimize hyper-parameters by searching over a uniform sample

3 http://im.ufal.br/professor /thales/libras,/

fa D =~ Nao 2 ke 50

Fig.2: Dynamic Libras sign dataset: images showing the first (top) and last
(bottom) frames of each trained sign, after background extraction. From the left
to right, the one-handed signs are H, “day”, “again”, “yours”, J; and the two
handed-signs are “night”, “enter”, “all”, “start”, “course”.
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of the search space. We consider the following hyper-parameters for 3D CNNs
and LRCNs:

— Number of convolutional layers: Cspenn = {1, 2} and Crren = {1, 2,3};

— Filter size of convolutional layers: Fspenny = FLren = {3,5};

Number of filters of convolutional layers: Ksponny = Krron = {16, 32,64};
— Number of dense/LSTM layers Lspony = Lrren = {1,2,3};

— Number of units of dense/LSTM layers Uspcny = ULren = {100, 200, 300}

Here, we consider both Uspceny and Upren to be three-dimensional vectors
containing the number of units up to 3 possible layers. If a layer does not exist,
we set the corresponding number to zero. The same applies to Fspconn and
Frren. After each convolutional layer of all models, a max pooling layer with
pool size (2, 2) and no stride is applied. For all layers of both architectures, we use
the ReLU activation function given by o(z) = max(0, z), with a few exceptions,
such as LSTM units and softmax layers.

For each combination of hyper-parameters, we perform a cross-validation ex-
periment by randomly splitting the dataset examples into training and test sets,
considering 70% of the examples for training and 30% for testing. The validation
accuracy is evaluated after 10 training epochs for LRCNs and 5 training epochs
for 3D CNNs. The mean validation accuracy after 10 repetitions is the value to
be optimized, representing the robustness of the evaluated model.

We employed the Adam optimization algorithm [10] of the Keras library [6],
with an initial learning rate of 0.001. The 5 best performing models of each class
of architectures are shown in Table 1. Excellent results were obtained from the
best configurations, achieving more than 99% of accuracy in all these cases.

To analyze the sensitivity of both classes of architectures to hyper-parameter
calibration, we investigated the accuracies distribution among all performed ex-
periments. Histograms of accuracies for both classes of architectures are exhib-
ited in Fig. 3. Clearly, most accuracies are concentrated near the best results of
Table 1. We conclude that the robustness of both classes of architectures is not
very sensitive to hyperparameter calibration, with most evaluated configurations
achieving more than 90% of accuracy. Consequently, the number of trainable pa-
rameters (weights) is a relevant criterion to select the most appropriate model.
As shown in Table 1, the best performing LRCN is the best choice, due to the
smaller number of weights.

We conclude that both classes of architectures can robustly be applied to
the recognition of dynamic Libras signs. The excellent results can be explained
by the relatively simplicity of dynamic Libras signs, and give evidence that such
models are appropriate to more complex situations, including, larger dictionaries
of signs and continuous conversations. However, in contrast to 3D CNNs, LRCNs
have the ability to output partial probabilities for each time step, which may be
very useful in such situations.

3.2 Comparison

In this section we compare the best performing deep model with a baseline
method. The objective is to show that, although most dynamic Libras signs
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Table 1: Accuracy of the best evaluated 3DCNNs and LRCNs models.

class C. F. K. L. U. mean accuracy| weights
LRCN 2 (3,3,0) 64 2 (100, 100) 99.8% 3,256,978
3DCNN 2 (3,3,0) 64 3 (300, 200, 100) 99.8% 18,779,658
3DCNN 2 (5, 3,0) 32 3 (300, 200, 100) 99.6% 5,656,874
LRCN 1 (3,0,0) 64 2 (100, 100, 0) 99.7% 14,868,050
LRCN 1 (5,0,0) 64 2 (200, 200, 0) 99.7% 27,570,074
LRCN 1 (3,0,0) 64 3 (300, 200, 200) 99.7% 45,322,250
LRCN 1 (5,0,0) 64 3 (300, 200, 200) 99.6%  |41,713,674
3DCNN 2 (3,3,0) 32 2 (200, 300, 0) 99.5% 6,287,286
3DCNN 2 (5,3,0) 64 2 (300, 100, 0) 99.5% 11,437,938
3DCNN 2 (3,3,0) 16 3 (100, 100, 200) 99.5% 6,287,286

are relatively easy to be recognized by deep models, a naive classifier will not
be appropriate in this situation. In this experiment, we consider that the same
inputs given to the 3D CNNs (raw depth video) are given to a multi-class one-
versus-all SVM classifier. We adopt the popular rbf kernel, and calibrate both
its radius 7 and the regularization parameter C. Both parameters are calibrated
by exhaustive grid search and cross-validation, using the same fraction of 70%
of samples for training and 30% for validation. The best performing model was
given by v = 0.1 and C = 1, achieving only 63% of accuracy, in comparison with
99.8% of the best deep model of Table 1.

4 Conclusion

In this work we proposed and experimented deep models for the recognition of
dynamic signs of Libras from depth data. Several variants of LRCNs and 3D
CNN s revealed high robustness for the recognition of segmented signs. As future
work, we expect the proposed models to be combined with other techniques, such
as skeleton trackers, to recognize more complex conversations of Libras, including
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(a) 3BDCNNs accuracies distribution (b) LRCNs accuracies distribution

Fig. 3: Histograms of accuracies of the evaluated deep models. Horizontal axes
represent relative accuracies, and vertical axes the relative frequencies.
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arms and body movement, so that the machine would be capable of translating a
Libras conversation in real-time. The collection of larger datasets would also be
required to turn this objective feasible. In addition, research on online recognition
methods would also be necessary, in such a way that unsegmented data could
be given as input to the machine to identify phrases and words.
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