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Abstract. The definition of a good view of a 3D scene is highly subjective and strongly depends on both the scene
content and the 3D application. Usually, camera placement is performed directly by the user, and that task may
be laborious. Existing automatic virtual cameras guide the user by optimizing a single rule, e.g. maximizing the
visible silhouette or the projected area. However, the use of a static pre-defined rule may fail in respecting the
user’s subjective understanding of the scene. This work introduces intelligent design galleries, a learning approach
for subjective problems such as the camera placement. The interaction of the user with a design gallery teaches
a statistical learning machine. The trained machine can then imitate the user, either by pre-selecting good views
or by automatically placing the camera. The learning process relies on a Support Vector Machines for classifying
views from a collection of descriptors, ranging from 2D image quality to 3D features visibility. Experiments of the
automatic camera placement demonstrate that the proposed technique is efficient and handles scenes with occlusion
and high depth complexities. This work also includes user validations of the intelligent gallery interface.
Keywords: Learning. Camera Positioning. Virtual Camera. Intelligent Camera. Good View.

Figure 1: Overview of the intelligent gallery interface (from left to right): 1- The scene is displayed to the user as a gallery of views. 2 - From
the user subjective selection of good and bad views, the machine learns user’s preferences. 3- Upon validation, a new gallery is generated by
genetic reproduction of the selected views. 4- Then, the machine automatically selects and orders the views in the gallery from its previous
training. 5- The user can correct the automatic selection, repeating the reproduction until converging to a satisfactory final view.

1 Introduction
Although we live in a three-dimensional world, our per-

ception of physical realities remains mediated primarily by
our visual senses, which are essentially bi-dimensional. Such
dimensionality reduction usually implies in a loss of inform-
ation. Humans deal with this sensorial limitation by resort-
ing to knowledge and contextual data. A particular exper-
ience that we acquire as we explore the world is to posi-
tion ourselves at vantage points which reveal the intrinsic
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3D structure of objects of interest. Photographers develop
this knowledge, learning where to place a camera to take a
perfect shot.

With the advent of computers and advances in graph-
ics technologies, we work more and more with three-
dimensional data using only two-dimensional visual inter-
faces, e.g. positioning virtual 3D camera through 2D inter-
action. In this context, the photographer task of producing a
good view can be laborious for both 3D specialists and in-
experienced users: On one side, engineers and scientists us-
ing high-end graphics for CAD/CAM, medical imaging or
simulations typically need to render large collections or se-
quences of 3D scenes, guaranteeing that each shot captures
the relevant details for their specific applications. This re-
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petitive task unfortunately requires advanced knowledge. On
the other side, 3D content has already come to the masses,
pledging for more intuitive interfaces. A great help for those
laborious tasks is a tool for the automatic generation of good
views, i.e., 2D images that show 3D content with minimal
loss, revealing the information desired by the user.

However, automatic viewpoint selection is a very hard
task for two main reasons: first, there are many factors which
must be taken into account to generate a good view, ranging
from perceptual issues to geometric analysis of the objects in
the scene; second, the “best” view heavily depends on what
we want to see, and thus, it is both a user and application-
dependent task.

In this paper we face the challenge of producing good
2D views by computer using the same approach as humans:
learning! To do so, we introduce intelligent galleries (see
Figure 1), an interface that learns from the user and evolves
with continuous usage. It incorporates learning into design
galleries, and can generate the desired views automatically
or semi-automatically.

Related Work

Automatic camera placement has received a con-
stant interest over the past decades [3], with mainly two
strategies according to [25]: visibility maximization and
view descriptor optimization.

The pioneering work of Kamada and Kawai [31] com-
putes good views for 3D objects by minimizing the number
of degenerated faces in orthographic projection. This simple
criterion has been enhanced to entail a larger amount of vis-
ible three-dimensional details and extended for perspective
projection in the works of Barral et al. [22] and Gómez et
al. [27].

Then, two-dimensional visibility criteria have been intro-
duced in Plemenos and Benayada [32], maximizing the non-
occluded projected area. Extending that work, Vázquez et
al. [34] propose a measure called viewpoint entropy, defin-
ing the goodness of a view as the amount of information
it provides to the observer. This entropy considers both the
projected area and the number of visible faces from the 3D
model normal dispersion. However for terrains, where all
the normals point in similar directions, this entropy loses its
pertinence. To workaround this, Stoev and Straßer [33] pro-
pose to maximize an average of the entropy and the max-
imal scene depth. More complex definitions of distinctive
regions have been proposed based on saliency learning [6]
and direct database search [14] Similar descriptors have been
used to generate a collection of representative views for a
single scene, based on surface visibility [4] or on the notion
of stable saliency-based views [21]. More view collections
techniques are related to the next best view problem [17, 5].
However, this work focuses on the single best view problem.

More recently, Lee et al. [7] introduce mesh saliencies
as a multiscale curvature-based measure of regional import-
ance. As an application, they define good views by max-
imizing the total saliency of visible regions, with a heur-

istic gradient-descent optimization. Polonsky et al. [13] also
measure the goodness of view by introducing 2D and 3D
view descriptors such as projected surface area, curvature,
silhouette and topological complexity. Different good views
are obtained by maximizing these descriptors individually.
Then, Sokolov et al. [19, 18] define good views minimizing
a distance between the visible area distribution of the poly-
gons in the image and the corresponding distribution of areas
in the 3D scene. Podolak et al. [12] propose to use symmetry
to define good projections and orientations of 3D scenes. Of
particular attention to us, the authors of [13] conclude that
combinations of such descriptors could lead to better results.
Our approach deduces such combinations from a learning
process.

Those techniques have been further derived using art and
design criteria, which is particularly relevant in animation
contexts. Blanz et al. [24] define factors that influence hu-
man preferred views for 3D objects, pointing out that the
relevance of each factor depends on the task, the object geo-
metry and the object familiarity. Gooch et al. [28] developed
a computer system based on these factors and heuristics used
by artists. Beyond static scene criteria, cinematography con-
straints have been proposed to generate good camera traject-
ories [23, 1, 26, 29, 30]. These criteria would be very useful
to guide the user in choosing good views and producing more
elegant animations, although we focus here on direct learn-
ing from user’s experience rather than pre-established design
rules.

Design galleries are described in the work of Marks et
al. [8] as an efficient tool for assisting the user for highly
non-linear problems with subjective goals. We extend here
this proposal into intelligent galleries, which incorporates
learning into design galleries. This allows assisting the user
by incorporating its own experience.

Contributions

This work proposes to learn good views of a 3D scene
from user’s experience. As opposed to visibility or single
view descriptor optimization approaches, it allows combin-
ing several criteria ranging from 3D scene content to 2D im-
age arrangement. Our learning approach turns this combina-
tion context-dependent. In particular, it does not rely on pre-
defined criteria, which are hard to define for such subjective
problem as camera placement.

We propose here an intelligent gallery interface, which
incorporates learning into design galleries. This leads to a
simple interface that continuously learns from the user. The
learning machine can then imitate the user to spare him
from repetitive camera placement. The statistical learning is
based on Support Vector Machines, and we further analyze
its dependency on each view descriptor. From this analysis,
we automatically adjust its parameters for each training set.
Preliminary results show the effectiveness of the proposed
interface in static and dynamic contexts.
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2 Technical Overview
The definition of good camera from the user’s experience

relies on three main ingredients: an adapted statistical learn-
ing technique described in section 3; an efficient computa-
tion of image- and object-space descriptors detailed in sec-
tion 4; and an intelligent gallery interface introduced in sec-
tion 5.

Descriptors. For each camera around an input 3D scene, a
set of descriptors of the rendered view is computed. These
descriptors either reflect the 2D image quality — e.g., the
proportion of the image covered by the scene, the complexity
of its silhouette curve or the alignment of the scene with the
image directions — or the visibility of 3D features — e.g.,
mesh saliency, connected components or velocity for fluid
simulations. We propose an efficient way to compute these
descriptors, allowing interactive performances.

Learning. The user’s selections in the intelligent gallery
serve as training set for the learning machine. More pre-
cisely, each view is represented as a vector v containing the
descriptors values. Each selected view is associated to a class
s = ±1, depending whether the user marked it as a good or
bad view. This way, we model the user selection as a discrete
mapping v 7→ f (v) = s. We use an SVM formulation to in-
crementally build a function v 7→ f̂ (v) = ŝ that statistically
approximates the user selection. We analyze this function f̂
and adjust its parameters for each specific training.

Intelligent Galleries. The gallery initially collects views
from a uniform sampling of the camera position space. A
previously trained learning machine marks some of those
views good or bad, which the user may correct. Upon val-
idation a new gallery is generated by genetic reproduction of
the good views, where the genes are the coordinates of the
camera: position and orientation. This correction/validation
process is repeated until the user obtains his best view of the
3D model, or until the genetic optimization converges ac-
cording to the learning machine. The views in the gallery are
ordered according to the learning machine, guiding the user
to quickly select subjective good views.

With this formulation, the machine interacts with the gal-
lery interface the same way the user would do and learns
from his corrections. This can provide a fully automatic cam-
era placement, which suits for repetitive camera placement
such as animation frames. The same framework can work in
semi-automatic mode, where the user controls and occasion-
ally corrects the machine selections. Finally, it can be used
only to guide the user, by proposing at privileged gallery loc-
ations the machine’s best views.

3 Statistical Learning
Our intelligent gallery learns continuously from the user’s

choices. To implement the learning, we use a derivation of
the Support Vector Machine (SVM) binary classifier, since
it provides a non-linear classification and copes well with
small training sets. SVM received a lot of attention in the

machine learning community since it is optimal in the sense
of the VC statistical learning theory [20]. We refer the reader
to the book of Smola and Schölkopf [15] for a complete in-
troduction to SVM techniques. This section briefly describes
some basics of SVM and how we derived it for ordering
views from a binary training. We further introduce a simple
analysis of the SVM results, and an automatic parameter ad-
justment based on this analysis.

SVM-based learning. During training, the SVM
learning machine receives as input set of pairs
{(v1, s1) , (v2, s2) . . .}, each pair corresponding to a view
submitted to user selection. The vector vi ∈ Rk contains the
view descriptors and the binary number si = ±1 codes if the
user marked the view as good or bad. The SVM produces
a classifier v 7→ sign

(
f̂ (v)

)
= ŝ that imitates the user’s

behavior. This classifying function f̂ corresponds to a linear
function, but in a high or infinite-dimensional space F :

f̂ (v) =
∑
jαj sj

〈
ϕ (vj) , ϕ (v)

〉
+ b . (1)

The function ϕ : Rk → F maps the descriptors space non-
linearly to the space F , leading to a non-linear classifier f̂ as
shown in Figure 2. In this work, we used a Gaussian kernel,
i.e.

〈ϕ (v1) , ϕ (v2)〉 = exp
(
−‖v2−v1‖2

2σ2

)
with penalty weight C = 1 for outliers. Note that this
classifying function uses all the components of the optimized
vectors vi at once, i.e. it combines all the different view
descriptors in one function.

The SVM classifier f̂ is optimized for its sign to approx-
imate the user marks s. However, we want to automatically
order the views from the best one to the worst, and we thus
need a continuous result. To do so, we directly use the func-
tion f̂ , interpreting that a high positive value of f̂(v) means
that the view is good with high confidence.

Classifying function analysis. Equation (1) defines the
classifier f̂ from the training set, and not directly from the
descriptors. The dependency to a particular descriptor (i.e.
a component of v) is thus hard to interpret directly. We
can observe this dependency visually, plotting the classific-
ation f̂ versus the values of a particular descriptor on the
training set (see Figure 3). Ideally, that plot for an influent
descriptor would present a strong dependency (see Figure 3
(top)), while a less influent descriptor would have a random
horizontal distribution of values (see Figure 3 (bottom)).

We would like to relate the non-linear function (f̂ ) sep-
arately with each descriptor. However, non-linear analysis
such as Kernel PCA [16] is not appropriate, since it would
find relations with ϕ

(
f̂(x)

)
. To avoid computationally ex-

pensive feature analysis or dimension reductions, we adopt
a heuristic approach: linearizing f̂ close to the average of
the descriptors. This leads to a linear approximation of the
non-linear dependency between a given descriptor and the
classification. If the variance around the linear approxima-
tion is small, the dependency is well characterized by the
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Figure 2: Good camera positions (in red)
from training the side view of the cow model
(Figure 7). The estimation of the good cam-
eras emphasize the non-linearity of the clas-
sifier.
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Figure 3: SVM prediction f̂ vs descriptor
value, for the training of Figure 2: the sa-
liency (bottom) has a low correlation with
the f̂ , contrarily to the foreground visibility
(top).
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Figure 4: Optimization of kernel parameter
σ for the training of Figure 9 (2−variance vs.
correlation): σ = 8 (bottom) maximizes the
descriptors’ influences, compared to σ = 1
(top).

slope of the regression line. If the variance is high, the lin-
earization may not be valid. This leads to a characterization
of the descriptor influence by the regression slope τ and the
variance η around it as τ(2− η) (see Figure 4).

Automatic parameters adjustments. The adjustment of the
parameter σ used in the SVM classifier is done in order to
maximize the influence of the parameters∑

d∈Descriptors

τd(2− ηd) ,

turning the learning more robust by forcing to use more
descriptors. To do so, we use a bisection method on the
values of σ to maximize the number of descriptors on the
top right of the plots (see Figure 4). This process runs in less
than a few seconds since the training set is fixed and small.

4 View Descriptors
In this section, we detail the collection of image-space

(2D) and object-space (3D) descriptors used to qualify a
view. Their values on a given view define the vector v,
which serves as input for learning. These view descriptors
correspond to commonsense good views, and their com-
bination obtained by the classifier may thus help charac-
terizing subjective good views. Several of the following
descriptors have already been used for camera position-
ing [11, 10, 13, 7]. We propose variations of those and further
add application-specific descriptors such as velocity for sim-
ulation and groups in character animation. We further pro-
pose an efficient way to compute those descriptors for reach-
ing interactive rates. The view descriptors refer either to the
object-space, counting how much of geometric features is
visible from the given camera, or to the image-space, eval-
uating the information contained in the rendered image (see
Figure 5).

Efficient Descriptor Computation Each object-space
descriptor is a number associated to a feature, which is com-
puted during pre-processing. For example, high curvature
is a 3D feature of the mesh, and the associated descriptor
counts how much of high curvature parts are visible for a
given view. To do so, each vertex of the 3D scene is associ-
ated to a 32-bits RGBA color that encodes the 3D features
present at that vertex. For example, if the curvature of a
vertex is high and if the first bit of the red color encodes
the high curvature feature, then the color associated to that
vertex will have an odd red component. For a given camera,
the scene is rendered with those colors. Note that several
passes can be performed if the feature coding requires more
than 32 bits. The object-space descriptor associated to a fea-
ture is then efficiently computed as the number of pixels in
the rendered image whose RBGA color encodes that feature.
This counting and the computation of the 2D descriptors are
done by traversing the color buffer.

property feature descriptor
low mesh curvature Σ visible low curv.

curvature medium mesh curvature Σ visible medium curv.
high mesh curvature Σ visible high curv.
low mesh saliency Σ visible low sal.

saliency medium mesh saliency Σ visible medium sal.
high mesh saliency Σ visible high sal.

patches patch identifier Σ visible patches
component identifier Σ visible 2D area /

connected / comp. 3D area
components component size Σ visible 2D area ×

× comp. 3D area

Table 1: Generic object-space descriptors.

The corresponding work was published in the proceedings of Eurographics 2009: Computer Graphics Forum, volume 28, number 2, pp. 717-726, Blackwell 2009.
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Figure 5: The view descriptors help the learning machine in characterizing good views. From left to right: mean curvature (black to white
scale), patches visibility (one color per patch), alignment in image plane, silhouette complexity and character groups in an animation context.
The top row shows views with high values of each descriptor, and corresponds to commonsense good views, as opposed to the bottom row.

(a) Object-space descriptors

In the current implementation of this work, we compute
the following 3D features: mean curvature, saliency, connec-
ted components and visible patches (see Table 1 and Fig-
ure 5). For specific applications such as fluid simulation or
animation, other properties such as velocity or human char-
acter groups are added to the descriptors.

Geometric features. As geometric properties, we compute
the mean curvature using the work of Meyer et al. [9] and the
saliency using the work of Lee et al. [7]. For fluid simulation
we add a 3D property corresponding to the magnitude of the
velocity vector. Since those 3D properties have very different
scales depending on the scene observed, we normalize them
by equalizing their histogram on the first gallery and scaling
their values to the unit interval. Each of these properties is
then associated to three features: low values (0 to 1

3 ), medium
values ( 1

3 to 2
3 ) and high values ( 2

3 to 1).

Parts visibility. We use different partitions of the 3D scene.
Connected components characterize the distinct scene ob-
jects, while patches of approximately equal area describe
how much of the whole scene is visible (see Figure 5).
The patches are computed with a greedy strategy: the set of
patches is initialized to the set of triangles and the smallest
ones are merged by union-find operations. Descriptors are
obtained by counting the visible 2D patch size relative to the
original 3D area, and also the 2D component size multiplied
by the 3D area, the latter emphasizing big components. For
animation, the character groups induce another partition of
the scene. For normalization purposes, the set of parts visib-
ility descriptors counts the visible pixels of each connected
component, patch or character group, divided by its 3D area.

(b) Image-space descriptors

For image-space descriptors, we use the area of the pro-
jected scene, the complexity of the scene silhouette, the dis-
tribution of 3D curvatures in the image plane and the align-
ment of the projected connected components with the im-
age’s rectangular border (see Figure 5). These image-space

descriptors are computed directly on the rendered image,
where we identify the 3D connected components in the fore-
ground from the color coding of the 3D features. We extract
the foreground’s contours by a simple continuation method.

The complexity of the silhouette is defined as the total in-
tegral of its curvature. The distribution of the 3D curvatures
is computed by the average distance of the projected vertices
to the center of the image, weighted by their mean curvature.
A similar descriptor is obtained by replacing the curvature
by the component size. Finally, the alignment of the con-
nected components is obtained by linear regression from the
projected vertices’ position. This descriptor is the average of
the regression lines inclinations, weighted by the number of
vertices of each component.

5 Intelligent Gallery Interface
In this work, we introduce intelligent galleries, which ex-

tend design gallery interfaces [8]. This gallery interface is
populated by a genetic reproduction strategy, and incorpor-
ates the learning machine described in section 3. In the gal-
lery, the user marks good and bad views by a simple click,
and the learning machine continuously evolves with those
selections. The main actions can be reduced to four options
(see Figure 6): 1 - load a new model; 2 - automatically select
and order best views according to the current learning ma-
chine; 3 - let the user correct and validate the current selec-
tion and produce a new gallery from it; 4 - fine render a final
view. The user can also use advanced features, such as saving
and loading learning machines, load sequence of models for
automatic camera placement, etc. This section details how
the galleries are initialized and reproduced and how the user
interacts with the learning machine.

Initial population. When the user loads a model, the first
gallery must offer him a good coverage of the 3D model. To
do so with a reduced number of views in the gallery, we re-
strict the camera positions and orientation to a subset of the
whole possible camera positions and orientation R3 × S2.
We distinguish terrain-like scenes, such as fluid simulation
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Figure 6: The intelligent gallery interface allows the user to teach and correct a learning machine while quickly reaching his best view. It
has mainly four actions: 1- open a 3D scene, which initializes the gallery; 2- automatically select and order good and bad views using the
current training; 3- correct or validate the selection and generate a finer gallery by genetic reproduction; 4- use a particular view for final
rendering. The training set accumulates all the user’s selections.

or character animation, from single objects, such as animal
or vehicles models. For terrains, the camera positions are re-
stricted to a parallelepiped above the terrain and the orient-
ation are chosen inside a cone of 45◦ aperture. For single
objects, the cameras are oriented towards the center of the
object, and their positions are constrained to the surface of
a sphere around the object. The radius of the sphere is set
to twice the diagonal of the object’s bounding box. In both
cases, the cameras of the initial gallery are positioned on a
regular lattice of these subsets of R3 × S2. The perspective
angle of the camera was fixed to 45◦.

Interactive genetic optimization. The user can correct the
automatically selected good and bad views in the gallery by a
simple click. Upon validation, a new gallery is generated by
genetic reproduction of the selected good views. More pre-
cisely, each camera position and orientation is represented by
a chromosome vector. This chromosome has 5 components
for terrain-like models: 3 for the position and 2 for the orient-
ation; and 2 components for single objects for the spherical
parameterization of the camera positions. The cameras of the
selected views are reproduced by generating random convex
combinations of those chromosome vectors. Each selected
camera randomly reproduces with four other cameras. Our
genetic reproduction thus generates a new gallery of twice
as much camera as previously selected good views. It is re-
peated until either the user gets satisfied or the learning ma-
chine’s choices converges.

Learning incorporation. The learning process tries to de-
tect the views that the user would select. It must be trained
first, so at least the first selection of the gallery must be
manual or obtained by a pre-defined training. Then, at each
selection validation, the views of the gallery are inserted into
the training set and classified with s = ±1, depending on
whether the user marked the view as good or bad. The train-
ing is continuous, and can also be accumulated from differ-
ent scenes. After each validation, the learning machine pro-
duces a new classifying function from the training set. Since
the total number of views in the gallery is small, the SVM-
based optimization is instantaneous, so that the user can use
the automatic selection at any time. Finally, we guide the

user by putting at the start of the gallery (top left) the best
views according to the classifying function.

6 Results
The proposed method for learning good views from user’s

experience has been tested in three different contexts: 1-
automatically reproduce user’s experience on similar mod-
els; 2- check the interface’s efficiency from recording in-
experienced user interaction; 3- generate automatic camera
trajectories for 3D animations from user’s training on few
frames.

We used three groups of models: static usual CG models
(see Figures 7, 9 and 10), challenging scenes such as knots
(see Figure 11) or high depth complex scene (see Figure 12),
and frames of 3D animations (see Figures 8 and 14). The
fluid simulation and character animation were generated us-
ing Blender [2] and each contains one per-vertex extra in-
formation: the fluid velocity and the character’ identifier.

(a) Automatic placement

Reproducibility. We first check that the learning strategy
combined with 3D and 2D descriptors is able to reproduce
simple definitions of best views. To do so, we used the cow
as a prototype for the animal models and navigated through
the gallery to obtain a side view of it (see Figure 7). Then,
we applied this training to the other animals in automatic
mode (no user intervention). The results are satisfactory even
for the horse, which has a slightly different pose. From the
analysis of the learning described in section 3, the machine
learned mainly from the foreground visibility and saliency.

Figure 7: Automatic placement (no user intervention) from training
for side views of the cow: the classifier illustrated in Figure 2
succeeds in automatically reproducing this best view from only one
training model.

The corresponding work was published in the proceedings of Eurographics 2009: Computer Graphics Forum, volume 28, number 2, pp. 717-726, Blackwell 2009.
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Figure 8: Selections of best view of a fluid simulation from a
designer (top left) and from a fluid researcher (bottom left) point
of view. Each learning machine leads to automatic views of other
frames of the simulation, according to the respective user’s choice.

We further checked the stability of the learning by count-
ing the false positive and false negative when removing ran-
domly 20% of the training set and testing on the removed
samples (out-of-sample test). The average false positive for
10 random removals is 2.7% and 3.0% of false positive for
the training of Figure 9. For the training of Figure 7, there
are 5.7% false positive and 0.2% false negative.

Subjectivity. We then check that our interface takes into ac-
count the user’s subjectivity (see Figure 8). To do so, we
submitted one frame of the fluid simulation to two differ-
ent users: a graphic designer, letting him free to choose his
best view and a fluid expert, asking him to focus on the fluid
flow features. The resulting views and selection sequences
obtained through the gallery interface were different. We
then applied the training obtained from each user on another
frame of the simulation and observed that the learning suc-
ceeded in selecting new views coherent with each training.

Comparison. We illustrate some result of our technique
and of previous works, from Polonsky et al. [13] and Lee
et al. [7] in Figure 10. We used a unique training for all
sets, obtained for the front view of the David’s head and
Max Planck’s head (see Figure 9). Using this training in the
intelligent galleries without user intervention leads to good
automatic view selection. As compared to single criterion
decisions [13, 7], descriptor combinations fits to a wider
range of models.

Challenging scenes. We further test our technique on more
challenging scenes where simple criterion would be hard
to determine explicitly. For example, 3D embeddings of
knots are usually challenging to render, while our intelligent
gallery is able to select clear views of complex knots from a
single training on the trefoil knot (see Figure 11).

Figure 9: A continuous training, started on David’s head to reach
the left view, and completed on the Max Plank’s head.

Figure 10: Comparison of our automatic view selection (right
column) from the training of Figure 9 with previous techniques:
area maximization [13] (top left), silhouette length maximiza-
tion [13] (middle left) and saliency-based camera positioning [7]
(bottom left).

Our technique handles nicely high depth scene and occlu-
sion, for example when looking across a forest for the front
of an occluded animal (see Figure 12): a single training even
on a low density forest leads to good view selection of the
animal front in more dense forests. Here, the occlusion is
forced by maintaining the camera in a 2D plane. The com-
bination of occlusion with the front constraint is a complex
criterion, which is correctly interpreted by our intelligent gal-
lery.
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Figure 11: Training on a single trefoil knot (left) leads to a coherent classification of good views for a more complex knot (decreasing view
quality from left to right).

Figure 12: Training on a high depth scene to catch the occluded
dinosaur front (top). The automatic selection still catches the dino-
saur’s front, although the new random forest contains more trees
(middle and bottom).

(b) Intelligent interface efficiency

We proposed the intelligent gallery interface to users with
no particular experience in camera placement. The users
chose themselves which models to work on. We asked them
to select a good view of the model through the intelligent
gallery, and then to obtain a similar view through a classical
interface (i.e. Blender). The learning curves and timings (see
Table 2) show that, after one or two models, the intelligent
gallery accelerates the user’s camera placement.

(c) Application to 3D video generation

We further test our method on 3D animation sequences,
where the camera placement must be repeated for each
frame. We trained a few frames of the sequence and the in-
telligent gallery then automatically selected the best views
for the key frames of the animation. For example in the 30
seconds character animation of Figure 14, we trained the first

0

10

20

30

40

triceratops dragon octopus mosquito woman squirrel

pr
oc

es
si

ng
 +

 in
te

ra
cti

on
 ti

m
e 

(s
ec

)

User C

model in order

intelligent gallery

blender

Model # of Pre- Proc Inter- Com-
Views proc -act -pare

cow (0) 60 (4) 2.140 8.280 73.8 41.3
doberman (1) 44 (2) 4.218 6.595 50.5 40.9
cat (2) 20 (0) 8.875 3.281 8.5 42.6
dinosaur (3) 20 (0) 17.172 3.469 4.7 33.8
cheetah (4) 20 (0) 4.703 3.234 6.3 41.3
knot 3.1c (0) 36 (2) 6.890 4.671 56.1 29.2
knot 7.7c (1) 20 (0) 6.672 3.235 10.0 22.5
knot 6.13c (2) 20 (0) 3.375 3.250 11.1 26.6
knot 138k (3) 20 (0) 3.735 3.250 7.1 21.9
triceratops (0) 28 (1) 2.313 4.906 35.9 30.7
dragon (1) 24 (1) 21.328 3.250 32.7 27.4
octopus (2) 24 (1) 9.531 4.375 28.9 23.6
mosquito (3) 20 (0) 5.141 3.234 11.6 29.4
woman (4) 20 (0) 4.359 3.297 10.6 23.9
squirrel (5) 20 (0) 5.281 3.328 7.6 26.7

Table 2: Efficiency of our intelligent gallery interface. The total
number of views generated by the galleries is completed by the num-
ber of galleries generated. The timings are expressed in seconds,
and the comparison was done using a standard 3D interface [2]
(crosses). The users adapted to the interface on two or three mod-
els (dots) and use it faster than traditional ones.

and last frame. We then applied it on key frames every 2
seconds. For testing purposes, we did not include any ad-
vanced constraints for the camera trajectory, such as respect-
ing cinematographic rules. We only avoid the camera to os-
cillate by picking across key frames, among the automatic-
ally selected good views, the one that minimize the image
displacement. Between key frames, the cameras are interpol-
ated by cubic splines, using standard tools of Blender [2]. A
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similar test has been performed on the fluid simulation of
Figure 8, training on four frames adding the velocity mag-
nitude and setting the key frame interval to 1.6 seconds (see
the video).

(d) Limitations

The proposed interface has mainly two limitations. First,
the intelligent gallery is designed to learn from the user
interaction on a small set of models and expects the user to
apply on models with similar objectives, e.g. a training set
for a side view should not be applied to obtain a front view.
For example on Figure 13, using the training of Figure 9
on the knot of Figure 11 or vice-versa leads to undesired
views. Performing an out-of-sample test of the training of
Figure 9 but applying on the samples of Figure 7 leads to
4.7% false positive and 52.0% of false negative: the front
views are discarded in the cow model, while being praised
in the other training. The reverse experiment leads to 8.5%
false positive and 53.5% of false negative.

The second is related to the number of parameters (k) of
the virtual camera. For the genetic reproduction to be able
to generate all the possible cameras, it needs at least to have
an initial population of size 2k (the corner of the hypercube),
and much more in practice. A complete camera with posi-
tion, direction, perspective angle, viewport. . . would require
an initial gallery too large for a reasonable interaction. To
overcome this problem, new cameras need to be inserted in-
dependently of the genetic reproduction, e.g. sampling the
view space [13] or using a next-best-view approach [17, 5].

Figure 13: When transferring a training across very different ap-
plications, here from the training of Figure 9 to the on of Figure 11
or vice-versa, the intelligent gallery may not weight correctly the
model features.

7 Next Steps
We proposed a new technique for automatic and semi-

automatic determination of good views that learns from the
user’s subjective criteria. The introduction of intelligent gal-
leries allows a smooth interface where the user incrementally
teaches the machine while achieving his own best view. Un-
like usual techniques, our learning approach can automatic-
ally obtain different good views of the same scene depending
on the user and the application. We further used the proposed
technique for camera placement in 3D sequences with simple
trajectory restrictions, obtaining nice animations.

The actual implementation of the technique used a re-
stricted set of descriptors for static 3D scenes. A greater set
of descriptors, including existing ones from design research,
would improve the learning process. Our framework can in-
corporate new descriptors with almost no alteration of speed
since the classification is instantaneous. As further research,
the use of intelligent galleries may improve other applica-
tions of design galleries, such as light sources positioning,
transfer function design or isosurface selection. A complete
user study will also be performed.
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