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Challenges

Gestures can be performed 
at different speeds or 
sequences of poses

Gesture are culture specific

Solution: learning!
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Discriminativity not considered for 
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Miranda et al (2012) training
1 - manual key pose selection/training using SVMs

2 - gesture training through key pose 
detection and decision forests
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Contributions

Key pose based: Extremely fast recognition!

Minimal interaction training:  single record for all gestures!	



Automatic discriminative key pose 
selection method	



Automatic gesture 
segmentation method
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Outline

1. Overview	



2. Pose representation	



3. Gesture segmentation	



4. Discriminant key pose selection	



5. Gesture identification	



6. Experiments0"

0.1"

0.2"

0.3"

0.4"

0! 50! 100! 150! 200! 250! 300! 350! 400! 450! 500! 550! 600! 650! 700! 750! 800! 850! 900! 950! 1000! 1050! 1100! 1150! 1200! 1250! 1300!

θ

x r’ u

t

r

vw
ϕ

v



Simplified training for gesture recognitionFaugeroux et al., 2014

Overview

automatic gesture segmentation

discriminant key pose selection

gesture identification
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Pose representation

Real-time depth sensing system streaming depth data

kinect (x1, · · · , x15)

(θ1,ϕ1, · · · , θ9,ϕ9)

OpenNI: public API to extract skeletons at 30fps
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Curvature estimation

Pose encoded by cartesian coordinates  
of 9 relevant joints:

First curvature:

where          points in the direction of the first normal.

We need to estimate          and           in real time!
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Parametric curve fitting
Lewiner et al (2005): fit a portion of the gesture curve 
around         to a parabola:

where      and      are estimates for the derivatives 
and          .

Weighted least squares minimization: fast!
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Gesture segmentation

Simple thresholding
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Outline

1. Overview	



2. Pose representation	
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Gesture representation: key poses

Miranda et al (2012)

key pose set gesture gesture representation 

What is a good key pose set?
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Ideal key pose set

✓Concise (small)	



✓Discriminative (avoid ambiguity)

Our solution: adaptive sampling
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Building a good key pose set

what if initial == final?

1 - initial / final gesture poses          
and must be key poses

insert intermediate farthest pose:

if      ==       , discard. (static gesture)



Simplified training for gesture recognitionFaugeroux et al., 2014

2 - similar representations for distinct gestures     and   
must be refined.

Building a good key pose set: Discriminant poses



Simplified training for gesture recognitionFaugeroux et al., 2014

2 - similar representations for distinct gestures     and   
must be refined.

Building a good key pose set: Discriminant poses



Simplified training for gesture recognitionFaugeroux et al., 2014

Insert most discriminant pose in each gesture:

2 - similar representations for distinct gestures     and   
must be refined.

Building a good key pose set: Discriminant poses
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Repeat the process above for every sub-sequence between  
successive key poses of     and    

Select the most distinctive pair	



Iterate until all gestures have different representations

If                                     , give gestures identical label.   	
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Semiautomatic labeling
Similar gestures confirmation

“Is      and        performances of the same gesture?"

Negative: force key-pose subdivision (ignore   ) 
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Gesture recognition

key pose set

gesture set

training set
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Learning method?
Many alternatives: action graph, decision forests, bag 
of features, SVM, nearest neighbor classifier,…

(Miranda et al, 2012): SVM + decision forest

nearest neighbor classifier
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Experiment Setup

✓Objective: comparison with 
Miranda et al (2012)	



✓ Same set of 11 gestures	



✓Gestures briefly described to 10 
inexperienced individuals	



✓Users should sequentially perform 
each gesture in a single record	



✓Unsuccessfully segmented 
gestures exceptionally retrained
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Segmentation robustness
From 10 users recordings:	



over-segmentation:
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Discriminant key pose selection
10 to 12 key poses per set

Key poses similar to manually designed key poses from 
Miranda et al (2012)

Bigger    : less key poses, less accurate executions needed            

Smaller    : more key poses, more accurate executions needed            

Miranda et al (2012) uses 11 key poses!
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Performance

Real time training:  
Segmentation + computing key pose representations

Real time gesture recognition.  

Offline experiment: 	



Segmentation + computing key pose representations:	



1239 frames (44.3 secs)	



20 gestures	



Total time: 0.33 secs
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Limitations & Future work

✓Execution speed not considered	



✓ Fixed threshold      

✓Only the first curvature is used for segmentation
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