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Current Scenario

Popularization of real time depth sensors

Microsoft Kinect Sensor

Development of high quality Natural User Interfaces (NUI)
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Challenges

Gesture are culture specific

Gestures can be performed
at different speeds or
sequences of poses
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Challenges

Gesture are culture specific

Gestures can be performed
at different speeds or
sequences of poses

Solution: learning!
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Learning approaches

User learns from
the machine
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Related Work: global methods

space-time accumulation / spatio-temporal templates

- (20I4) E E E E

Bobick and Davis (2001)

Training phase required for gestures only

Requires more computing resources
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Related Work: local methods

Feature-based: spatiotemporal interest points / key poses

salient postures
through clustering
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D 2D Miranda et al (2012)

manual key pose training
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Q K />D Extremely fast recognition

) Wk @) Sido Training phase usually required

for key pose learnin
Li et al (2008) Y P &

Discriminativity not considered for
trained gestures
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Miranda et al (2012) training

| - manual key pose selection/training using SVMs

pose descriptor extraction key pose

learning machine
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Miranda et al (2012) training
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Contributions

Automatic gesture
segmentation method
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Key pose based: Extremely fast recognition!
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Minimal interaction training: single record for all gestures!
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Outline

|. Overview

Pose representation

Gesture segmentation
Discriminant key pose selection

Gesture identification

A

Experiments
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Overview

automatic gesture segmentation

gesture identification
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Pose representation

kinect

Real-time depth sensing system streaming depth data

OpenNI: public APl to extract skeletons at 30fps
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Joint-angle pose descriptor

Miranda et al (2012): 9 relevant body joints
converted to a list of spherical angles:

pose: p € (82)9

gesture: a: [ C R — (82)9
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Joint-angle pose descriptor

Miranda et al (2012): 9 relevant body joints
converted to a list of spherical angles:

pose: p € (82)9

gesture: a: [ C R — (82)9

Comparing joints | in distinct poses p and p':

d(py, p;) = arccos (sin ) sin 8; + cos 0; cos 0; cos | — 7))

Distance between poses:

Alp,p) =Y [6 (o p))]°

[=1
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Gesture segmentation

Objective: avoid usual protocols requirements: neutral pose
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Gesture segmentation

Objective: avoid usual protocols requirements: neutral pose

user inserts small pauses
in-between gestures
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high curvature of the gesture
curve
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Curvature estimation

a: I C R~ (S?)
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Curvature estimation

Pose encoded by cartesian coordinates
of 9 relevant joints:

a: I C R+— R?Y

First curvature:

(a”(1), es(t))
0= )2

where es(t) points in the direction of the first normal.

We need to estimate o’ (¢) and «"(¢) in real time!
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Parametric curve fitting

Lewiner et al (2005): fit a portion of the gesture curve
around «(t) to a parabola:

where &' and & are estimates for the derivatives o’(t)
and o' (t).
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Parametric curve fitting

Lewiner et al (2005): fit a portion of the gesture curve
around «(t) to a parabola:

a(s)=alt)+d -s+3-a"-s°

where &' and &'’ are estimates for the derivatives o’ (t)
and o' (t).

Weighted least squares minimization: fast!
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Gesture segmentation

Faugeroux et al., 2014

Simple thresholding
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Gesture segmentation

M
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Outline

|. Overview

Pose representation

Gesture segmentation
Discriminant key pose selection

Gesture identification
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Gesture representation: key poses

AERREL

Miranda et al (2012)
o o

Hivil B

key pose set gesture gesture representation
K:{k17°°°7kn} g:(p17p27°°°) .é:(k’mkja)
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Gesture representation: key poses

AERREL

Miranda et al (2012)

What is a good key pose set? Alp, ky) <e 7
o
o o
o
o
o o
o
key pose set gesture gesture representation
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ldeal key pose set

v Concise (small) (ﬁ) %\ ﬁ ﬁ
v Discriminative (avoid ambiguity) ﬁ) /ﬁ_ ﬁ\

g1

[

——
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ldeal key pose set

v Concise (small) (ﬁ) %\ ﬁ m
v Discriminative (avoid ambiguity) (ﬁ) W ﬁ\

g1 kz

k1

k4
g2
k3

Our solution: adaptive sampling
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Building a good key pose set

/ﬁ\

| - initial / final gesture poses
k1 and k2 must be key poses
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Building a good key pose set

| RN
ﬁ ma-nnn ="

g — k17k27k1

| - initial / final gesture poses
k1 and k2 must be key poses

insert intermediate farthest pose:

ko = argmax A (p, k1)
peg
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Building a good key pose set

| RN
ﬁ ma-nnn ="

g — k17k27k1

| - initial / final gesture poses
k1 and k2 must be key poses

insert intermediate farthest pose:

ko = argmax A (p, k1)
peg
if k1 == ko ,discard. (static gesture)
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Building a good key pose set: Discriminant poses

2 - similar representations for distinct gestures ¢ and ¢’
must be refined. g

ko
k1
/

g

il

k | L'Q
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Building a good key pose set: Discriminant poses

2 - similar representations for distinct gestures g and ¢’
must be refined.

§ O

kio
Insert most discriminant pose in each gesture: %
k141, = argmax min A (p,p
pEg DP'EG’ /ﬁ‘ k
/
141/, = argmax min A (p’, p)
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Discriminant poses: general case

Repeat the process above for every sub-sequence between
successive key poses of g and ¢’

Select the most distinctive pair

j — argmax { min A (kz 1/2,]?/) + min A (k7,;_|_1/27p> o

i p'€g; PEY;

If A (kj+1/2, k;-Jrl/z) < € , give gestures identical label.

Iterate until all gestures have different representations
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Spurious gesture elimination

roE T
K

i
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Spurious gesture elimination
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Spurious gesture elimination

i

Transitions between gestures

;

Static gestures
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Semiautomatic labeling

Similar gestures confirmation
k1

92 g1 = (k1, k2, k3)
g1 ]fg gAQ — (k17k27k3)
k

2

“Is g1 and g2 performances of the same gesture?”
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Semiautomatic labeling

Similar gestures confirmation
k1

92 g1 = (k1, k2, k3)
g1 ]Cg gAQ — (k17k27k3>
ko

“Is g1 and g2 performances of the same gesture?”

Negative: force key-pose subdivision (ignore ¢)

g2 .
L g1 — (k17k47k27k3)
5 ”
g1 kg go = (klak57k27k3)
k4 k2
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Fa

Gesture recognition

key pose set

K=1{ky,... ky}

gesture set
g — {g\17§27'°'7g;n}

training set
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Learning method!?

Many alternatives: action graph, decision forests, bag
of features, SYM, nearest neighbor classifier,...

Faugeroux et al., 2014 Simplified training for gesture recognition



Learning method!?

Many alternatives: action graph, decision forests, bag
of features, SYM, nearest neighbor classifier,...

(Miranda et al, 2012): SVM + decision forest
L_/v nearest neighbor classifier

3 ( k, =argmin A (k,p) if A(ky,p) <e,
flp) =« kex ,
-1 otherwise.
D06 FOOO® § " @ 6@
000 DO®®
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Experiments

Faugeroux et al., 2014 Simplified training for gesture recognition



Experiment Setup

v Obijective: comparison with
Miranda et al (2012)

v Same set of | | gestures

v Gestures briefly described to |10
inexperienced individuals

v Users should sequentially perform
each gesture in a single record

v Unsuccessfully segmented
gestures exceptionally retrained
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Segmentation robustness

From 10 users recordings:

gesture d segmentation .
accuracy over—segmentatlon.

Turn Next Page Jga 10

Turn Previous Page | gp 10

Raise Right Arm Jc 10

Raise Left Arm ap 10

Open Clap 0E 8

Open Arms gr 9 TR RN RN

Put Hands Up Lat. lile. 9

Put Hands Up Front | gy 10 ﬁ fﬁ\ /ﬁ‘

Lower Right Arm g1 g

Bow gy t

Goodbye 0K

average (%) 88
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Segmentation robustness

Simplified training for
gesture recognition

example: online
segmentation and key
pose selection
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Discriminant key pose selection

10 to 12 key poses per set

RIRAT AR

Key poses similar to manually designed key poses from
Miranda et al (2012)

Miranda et al (2012) uses | | key poses!

Bigger € :less key poses, less accurate executions needed

Smaller e :more key poses, more accurate executions needed
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Discriminant key pose selection

TR
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N
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Gesture recognition

Each user executed each gesture |0 times

. segmentation recognized gestures per user ours | [14]
gesture id
accuracy U1 Uy U3 Ug4g U Ug U7y U Ug U0 (%) (%)
Turn Next Page Jda 10 10 8 10 10 9 9 10 9 9 9 93 95
Turn Previous Page | gg 10 10 9 10 10 9 6 9 9 9 10| 9 95
Raise Right Arm Jgc 10 9 8 9 8 7 10 9 10 8 10| 88 9
Raise Left Arm Jp 10 10 10 9 10 9 9 10 9 10 9 95 94
Open Clap JE 8 10 10 10 9 9 8 10 9 8 10| 93 99
Open Arms Jgr 9 9 9 10 8 9 10 10 9 8 9 91 97
Put Hands Up Lat. Jile: 9 10 10 10 10 10 9 10 10 10 10 | 99 | 100
Put Hands Up Front | gy 10 o 9 7 9 10 9 10 10 10 9 93 96
Lower Right Arm a1 8 g8 7 6 8 7 8 8 8 8 7 75 82
Bow gJ 6 10 10 10 9 10 10 10 9 10 10 | 98 | 100
Goodbye JK 7 9 9 10 7 9 10 9 10 8 7 88 92
average (%) 88 9 92 89 8 91 89 93 89 91 92

pANAT AT TR
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Performance

Real time training:

Segmentation + computing key pose representations

Real time gesture recognition.

Offline experiment:

Segmentation + computing key pose representations:
1239 frames (44.3 secs)

20 gestures

Total time: 0.33 secs
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Limitations & Future work

v Execution speed not considered

k1

g2
V' Fixed threshold ¢

k3
gi ks

v Only the first curvature is used for segmentation

250 300 350 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250 1300

400

50 100 150 200
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Thank you for your attention!

FPS: 30

Questions!
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