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Abstract

The recent popularization of real time depth sensors has diversified the potential applications of online gesture recognition
to end-user natural user interface (NUI). This requires significant robustness of the gesture recognition to cope with the
noisy data of popular depth sensor, while the quality of the final NUI heavily depends on the recognition execution
speed. This work introduces a method for real-time gesture recognition from a noisy skeleton stream, such as those
extracted from Kinect depth sensors. Each pose is described using a angular representation of the skeleton joints. Those
descriptors serve to identify key poses through a support vector machine multi-class classifier, with a tailored pose
kernel. The gesture is labeled on-the-fly from the key pose sequence through a decision forest, that naturally performs
the gesture time control/warping and avoids the requirement for an initial or neutral pose. The proposed method runs
in real time and have shown its robustness in several experiments.

Keywords: Online gesture recognition, Key pose identification, Skeleton representation, Depth sensors, SVM
multi-class, Decision forest, 3d motion, Natural user interface

1. Introduction

Human gesture recognition is an active topic of re-
search and covering a wide range of applications includ-
ing originally monitoring, control and analysis. More re-
cently, several applications use real-time (online) gesture
recognition to control entertainment devices such as game
consoles, virtual reality setups, motion capture to graphics
model animation, or automatic control of domestic utili-
ties.

The variety of potential applications have intensified
the efforts to improve the automatic recognition of human
gestures. The evolution and popularization of depth sen-
sors, which currently generate depth maps in real time as
well as their skeletons, is paving the way for the develop-
ment of high quality natural user interface (NUI) beyond
their use as game consoles. Improving the quality of a
NUI essentially means to increase the execution speed of
the gesture identification and its robustness, in particular
with noisy data such as skeletons extracted from Kinect
sensors, and this is the objective of the present work.

The gesture recognition problem can be stated as the
process of automatically labeling gestures performed by
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a person based on sensory data, usually captured as se-
quences of positions in space. This is a particularly chal-
lenging task, specially considering that different users per-
form gestures with different speeds and distinct sequences
of poses. In this work, we propose a gesture recognition
method from captured skeletons in real time that tackles
the aforementioned issues. More specifically, all our exper-
iments are performed using the popular Kinect platform,
a real-time depth sensing system that parses a depth-map
stream at 30 frames per second, from which positions of
the skeleton nodes for each frame can be estimated in real
time [23].

Contributions. A human gesture can be formally described
as the continuous evolution of body poses over time. Inter-
estingly, we verbally describe such gestures by sequentially
identifying a few extreme poses, referred to as key poses
[13], as illustrated in Figure 1. In this case, we recognize
a gesture by extracting those key poses, classifying them,
and then identifying sequences of key poses as a gesture.
Following this observation, we focus here on improving
and tailoring the three main ingredients of key pose ges-
ture recognition: pose descriptor, pose identification, and
labeling of pose sequences.

Our pose descriptor relies on spherical angular repre-
sentations of joints, similarly to the recent work of Rap-
tis et al. [20]. However, our method is more robust for
usual gestures, and it allows for real-time pose classifica-
tion. In particular, it improves the representation of sec-
ondary joints (arms, hands, legs and feet) to better suit
NUI applications.
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Figure 1: Gesture representation from key poses: Our method represents a body gesture as a sequence of a few extreme body poses, referred
to as key poses. In the example above, a gesture composed by opening arms and then clapping hands is represented by the key poses in black.

The pose identification process combines several Sup-
port Vector Machine (SVM) classifiers [25], one per refer-
ence key pose. We propose a pose kernel that entails the
angular nature of our representation, and use that pose
kernel distance in feature space as the confidence mea-
sure. This pose kernel significantly improves the robust-
ness of the method over a kernel based on Euclidean dis-
tances [15], as seen in the results section. Moreover, the
small pose descriptor size allows for online training and
recognition.

Finally, we propose a scheme for gesture recognition
based on decision forests. Each forest node is a key pose,
eventually including time constraints, and the leaves are
the gesture labels. This decision forest is learned during
the training phase. Each tree is rooted at a key pose,
and a leaf-to-root path represents a possible sequence of
key poses of that leaf gesture. At each identification of
a new key pose, the tree rooted at that pose is used to
check if it completes a gesture. This allows for real time
gesture recognition without the need for a neutral/initial
pose. Moreover, the decision state machine produces a
natural and robust time warping. The whole process is
robust even with noisy depth-based skeletons [23] as shown
in the results section.

This work is an extension of a conference work pre-
sented at Sibgrapi 2012 [15].

2. Related work

Human gesture recognition has been extensively stud-
ied, and a large body of literature has been produced for
application in areas such as surveillance, home monitoring
and entertainment. We summarize here the most related
work for gesture recognition according to the spatial rep-
resentation used: local, global or parametric.

In the local category, the methods typically use point-
wise descriptors evaluated at some points of interest, and
then use a bag of features (BoF) strategy to represent ac-
tions. This approach has attracted much attention in the
past few years [24, 2, 7, 19], and an example of largely
used local feature is the Space-Time Interest Point (STIP)
presented by Laptev and Lindeberg [9]. A drawback of
local features approaches is that they lose spatial context
information between interest points.

The methods in the global category use features such
as silhouettes [13, 29, 10] or template based representa-
tions [3, 1], where spatial context information is preserved.
However, global features usually miss some precise details
of the pose such as body joints identification.

Finally, parametric methods try to reconstruct a model
of the human body with identification of joints to obtain
an skeleton. Skeletons can be obtained by strategies such
as the Motion Capture (MoCap) models [8, 18], where a set
of markers is attached to the human body at specific points
that are tracked during motion. Using this representation,
spatial features are constructed using some geometric mea-
sures and relations, e.g. angles [6, 5] and body joints po-
sitions [17, 16]. In particular, Vieira et al. [26] show that
the matrix of distances between body joints completely
describe a pose up to rigid movements, and such matrices
serve to define low-dimensional invariant features for clas-
sifying actions.
MoCap skeletons strongly depend on rather sophisticate
capture systems. A more accessible way to generate skele-
tons is proposed by Shotton et al. [23], who obtain skele-
tons without markers by computing joint coordinates in
real time from depth maps. In particular, such skeletons
can be obtained from the popular Kinect sensor. Com-
pared to MoCap data, skeletons from Kinect are easier to
obtain, which have driven the popularity of this sensor.
However, they show a high level of noise and spatial dis-
continuity, turning gesture recognition from depth data a
sizable challenge, and that is the focus of the present work.

Gesture recognition using skeletons from Kinect has
received a lot of attention recently. In particular, Li et
al. [11] published the MSR Action3D dataset, a database
with depth maps sequences and their respective skeletons,
composed of 20 different short and non-repetitive action
classes, each performed by several subjects [12]. They dis-
tinguish three different subsets and present their classifi-
cation rate obtained for each test. This dataset became
a benchmark for several recent works [27, 30, 31]. We
also use this dataset to validate our approach for action
classification and present comparative results with other
state-of-the-art works in the literature.

Reyes et al. [21] obtain 3D coordinates of skeletal mod-
els using a reference coordinate system to make the de-
scription view point invariant and tolerant to corporal dif-
ferences among subjects. Results are reported for only five
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Figure 2: Our method learns and recognizes, in real time, key poses and gestures from a compact joint-angle skeleton representation. The
same machine is used for the four steps: training the key pose learning machine (purple arrow); recognizing user key poses in real time (blue
arrows); training the gesture learning machine (red arrows); recognizing user gestures in real time (green arrows).

different categories. Raptis et al. [20] introduce a method
for classifying dance gestures using Kinect skeletons where
a large number of gesture classes are used. Their pose de-
scriptor uses spherical coordinates in a frame obtained by
Principal Component Analysis on a subset of the body
points that define the torso. In spite of the high recog-
nition rate reported, their classification method is limited
to dance gestures and is conceived based on the strong
assumption that the input motion adheres to a known
music beat pattern. We extend their pose descriptor to
a completely invariant angular representation. Vieira et
al. [27] propose a global feature, called Space-Time Oc-
cupancy Patterns for action recognition from depth map
sequences where space and time axes are used to define a
4D grid. A saturated histogram of point count in the grid
cells is used as features for action classification. Yang &
Tian [30] propose a new type of feature based on position
differences of joints which combines action information in-
cluding static posture, motion, and offset. They employ
the Näıve-Bayes-Nearest-Neighbor classifier for multi-class
action classification and also explore the number of frames
that are needed to classify the actions. Yang et al. [31]
project depth maps onto three orthogonal planes and ac-
cumulate global activities across entire video sequences to
generate the Depth Motion Maps (DMM). Histograms of
Oriented Gradients (HOG) are then computed from DMM
as the representation of an action video. The pose descrip-
tor proposed here is simpler but still invariant under rigid
motion. We derive a pose kernel to adapt its angular na-
ture to the SVM classifier, leading to a robust yet efficient
pose identification.

Beyond spatial representation, gesture recognition has
to address the issue of temporal alignment among differ-

ent sequences that may present significant variability. To
address time alignment, Hidden Markov Models is largely
used [4, 32]. Li et al. [10] propose a graphical modeling of
human action where key poses define nodes of the graph
and each action describes a path in the Action Graph.
Müller et al. [17, 16] use Dynamic Time Warping (DTW)
on MoCap data to address time alignment in their Motion
Templates, and Reyes et al. [21] extend DTW, assigning
weights to features based on inter-intra class action vari-
ability. In this work, we propose a simpler, yet robust and
efficient method to perform alignment through a decision
forest scheme.

3. Technical Overview

Our method use three main ingredients both for train-
ing and recognition, as illustrated in Figure 2: A pose
descriptor that concisely represents a human body pose,
described in Section 4.1; a multi-class SVM learning ma-
chine that robustly identifies key poses in real-time, de-
tailed in Section 4.2; and a decision forest to recognize
human gestures, optionally considering time/speed con-
straints (Section 5).

Pose Descriptor. We convert the set of points representing
the nodes of the skeleton to a reduced, invariant represen-
tation to robustly solve the gesture recognition problem.
We extend the representation of Raptis et al. [20] to a
pure joint-angle representation. It provides invariance to
sensor orientation and reduces redundancy and space di-
mensionality, while preserving relevant information for the
classification of key poses.
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Key Pose Learning. We use a multi-class SVM [25] ap-
proach to recognize key poses in real time. During a train-
ing phase, the users performs and label several examples
of key poses, such as in the MSR Action 3D data set [12].
This training set is used to build several SVM binary clas-
sifiers that robustly recognize key poses, in a one-versus-all
approach. We propose a pose kernel that properly handles
the angular nature of our joint-angle representation. The
efficiency of this method permits both real-time training
and classification, in particular allowing the user to even-
tually improve the training set by adding key poses or
correcting misclassified poses.

Gesture Training and Recognition. After key pose train-
ing, the user execute and label examples of gestures. The
key poses appearing in each gesture are automatically iden-
tified from the SVM machines. After training, a deci-
sion forest is optimized to allow efficient search for any
sequence of key pose that compose a gesture, as described
in Section 5. For each gesture performance, the key poses
are accumulated into a circular buffer, checking in the de-
cision forest if the sequence completes a known gesture.
This avoids the need for an initial/neutral pose. The for-
est nodes can optionally consider time/speed constraints.
Even when different users perform the same gesture with
different duration of key poses, the decision forest provides
an effective and robust solution to that temporal alignment
problem.

4. Key Pose Statistical Learning

Key pose gesture recognition methods are highly de-
pendent on the robustness of pose classification, demand-
ing efficiency in order to provide real time performance.
To solve this classification problem, we propose a super-
vised learning approach, where the training key poses are
obtained from the user. We further aim to deliver robust
pose identifications even with small training sets, as those
provided by a single short training session. Finally, we
would like the user to be able to provide, at any moment,
additional labeled training data to correct and improve the
classifier robustness, while keeping its efficiency.

We build such a classifier using a multi-class composi-
tion of Support Vector Machines (SVM) binary classifier,
whose formulation is well suited to meet our requirements.
SVM received a lot of attention in the machine learning
community since it is optimal in the sense of the VC statis-
tical learning theory [25]. We refer the reader to the book
of Smola and Schölkopf [22] for a complete introduction to
SVM techniques. This section briefly describes some basic
aspects of the multi-class SVM approach we adopted, as
well as of our joint-angle skeleton representation and the
tailored pose kernel we developed.

4.1. Joint-angle Representation

The skeleton representation must be invariant to sen-
sor orientation and to global translation of the body. It

Figure 3: Skeleton’s graph: torso joints are represented in red; first-
degree joints in blue; and second-degree joints in black.

also must be able to minimize issues with skeleton size
variations from different individuals, while still concisely
capture all the relevant body pose information.

The raw skeleton input from Kinect sensor is, for each
frame, is a sequence of graphs with 15 nodes [23], where
each node has its geometric position represented as a 3D
point in a global Cartesian coordinate system (Figure 3).
The joints adjacent to the torso are called first-degree
joints, while joints adjacent to first-degree joints are clas-
sified as second-degree joints. First-degree joints include
the elbows, the knees and the head, while the extremities
– hands and feet – are regarded as second-degree joint.
Different body poses are essentially obtained by rotating
the first and the second-degree joints. Note that each joint
movement has two degrees of freedom, later referred to as
a zenith angle θ and an azimuth angle ϕ (Figure 4). The
distance between adjacent joints is always constant for a
given individual.

In the work of Raptis et al. [20], a straightforward joint-
angle representation is proposed by writing the position
xl ⊂ R3 of a joint l in local spherical coordinates, omitting
the radial distance. To do so, a torso basis is estimated
by applying a PCA to a 7 − 3 torso matrix filled with
the torso node positions. Then, the spherical coordinates
of each first-degree joint are computed as a translation of
this torso basis to the joint. However, the same torso basis
is used as a reference to convert the second-degree joints,
leading to a non-local description of the angles. Also, as
mentioned by the authors, some combinations of joint posi-
tions can result in collapsed projections, and consequently,
in inconsistent angles, as in the open arms position [20].
We use the same torso basis for first-degree joints, but
improve the representation of second-degree joints by con-
sidering rotations of the orthonormal torso basis {u, r, t}.

More precisely, let v,w be the vectors supporting the
bones adjacent to a joint. For example, v would be the
vector defined by the right shoulder and the right elbow
and w the vector between the right elbow and the right
wrist. To define a local basis for the right hand, we rotate
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the torso basis {u, r, t} by the angle β = v̂, r around the
axis b = v×r. The rotated basis is translated to the right
elbow and the spherical coordinates of the right hand are
computed as

• θ - the angle between v and w

• ϕ - the angle between the rotation of t and the pro-
jection of w on the plane orthogonal to v

If v and w are collinear, we just set φ = 0, since the
azimuth is not defined, and this will not be an issue to our
SVM pose classifier. The second-degree joints are thus
constructed using variants of the torso basis, such that
collapsing issues are avoided by other body constraints.

Finally, each joint position xl is represented using a
pair of spherical angles (θl, ϕl) that specifies it in a locally
defined spherical coordinate system. Considering a skele-
ton with 9 joints, a body pose joint-angle representation
is a pose descriptor vector v = (θ1, ϕ1, . . . , θ9, ϕ9) ∈ R18.
Actually each pair (θl, ϕl) represents a pair of positions on
the sphere, and this particularity will be correctly handled
by the pose kernel.

Figure 4: Joint-angle representation: each body pose is a product of
joints movements, each of which has two degrees of freedom in local
spherical coordinate systems: the zenith angles θ and the azimuth
angles ϕ.

4.2. Multi-class SVM formulation

The classifier looks for similarities with reference key
poses in a pre-defined set K =

{
c1, c2, . . . , c|K|

}
. Those

key pose classes will be used to build gesture representa-
tions later on. During key pose training, the user creates
a training set by providing several examples of each key
pose. In our experiments, 10 examples per key pose were
usually enough, as in the MSR Action 3D data set[12]. The
multi-class SVM learning machine is fed with the training
set T =

{(
v1, c1

)
,
(
v2, c2

)
, . . .

}
, where each key pose v is

trained by the user for a specific label c. More precisely,
each vector vi ∈ R18 is the pose descriptor of the trained
key pose, while ci ∈ {1, . . . , |K|} is an integer identifying
the key pose class.

For each reference key pose p ∈ {1, . . . , |K|}, we build

an SVM classifying function f̂p as the kernel distance to
some of the trained pose (the support vectors SV):

f̂p (v) =
∑
j∈SV α

j ψp(cj) φ
(
vj ,v

)
+ b,

where

ψp(c) =

{
1 if c = p,
−1 otherwise,

and the set of support vectors SV and weights αj are de-
termined by the SVM optimization.

Pose kernel. The function φ : Rm × Rm → R maps a pair
of pose descriptors to their scalar product in a feature,
possibly infinite-dimensional space, turning f̂p into a non-
linear classifier. Our pose descriptors represent a body
pose through several joints spherical angles. Consequently,
using a metric on spheres is more suitable to evaluate dis-
tances between pose descriptors than the usual euclidian
distance ([15]). However, as most conventional kernels
(e.g., the Gaussian kernel) are usually parameterized by
euclidian distances between vectors. We propose an alter-
native Pose kernel to respect the angular nature of our
pose representation, inspired by spectral kernels [14].

Given two points vil = (θil , ϕ
i
l) and vjl = (θjl , ϕ

j
l ) on the

sphere S2, their geodesic distance on S2 is given by:

∆(vil , v
j
l ) = arccos(sin θil sin θjl+cos θil cos θjl cos |ϕil−ϕ

j
l |) .

Let vi,vj be two pose descriptors. For each joint l, ∆(vil , v
j
l )

represents the geodesic distance of the pose descriptors
projected on the unit sphere restricted to that joint. By
summing the squares over all nine joints representing a
body pose, the metric is obtained as the geodesic distance

on
(
S2
)9

:

∆(vi, vj) =
∑9
l=1 [∆(vil , v

j
l )]

2 .

Finally, the Pose kernel is obtained by adapting the Gaus-
sian kernel to this metric:

φ
(
vi, vj

)
= exp

(
− 1

2σ2 ∆(vi, vj)
)

.

We calibrate the pose kernel parameter σ and the flex-
ible margin parameter C used in the SVM optimization
by using an out-of-sample approach to evaluate the qual-
ity of the parameters, and a gradient descent algorithm to
find the optimal parameters. In our experiments, the best
results were obtained when σ ≈ 0.3 and C ≈ 2.5.

Classification. Given a query pose represented by its de-
scriptor v, each classifying function f̂p returns positive
values if v is likely to be of a key pose class p, and neg-
ative values otherwise. Intuitively, the larger the value,
the higher the confidence. Such use of the SVM-distance
for classification confidence has been successful in other
contexts, as for intelligent galleries design [28]. The key
pose classifier then chooses the key pose associated with
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Figure 5: Gesture learning machine example: a forest containing five key poses (left); and the four gestures represented by the forest (right).

the classifier returning the highest confidence among all
key pose classifiers. Formally, the key pose class from de-
scriptor v is then

f̂ (v) =

{
q = argmax

p
f̂p (v) if f̂q (v) > 0,

-1 otherwise.
(1)

Note that if all classifiers return negative values, then the
queried pose does not belong to any trained key pose class,
causing the key pose classifier to return −1. This could
simply be an intermediate pose, or a missing pose in the
set K.

5. Gesture Recognition through Decision Forest

A human body gesture can be represented as a con-
tinuous curve over time in the space of all realizable body
poses. However, most gestures can be identified by a se-
quence of just a few key poses [13], which can be seen as
a discretization of the continuous gesture curve. Our ges-
ture recognition also uses a supervised learning approach.
Instead of SVM, the gesture training set is structured in a
decision forest that efficiently recognizes gestures, parsing
the key poses sequence of the user’s performance in real
time.

5.1. Defining a gesture

We presented gestures as sequences g = {k1, · · · , kng}
of key poses ki ∈ K. Indeed, a gesture is typically identi-
fied through a small sequence from two to five key poses.
For example, a gesture composed by opening arms and
clapping hands may need as few as 4 key poses, as shown
in Figure 1. Often, slightly different executions of the same
gesture class can lead to different sequences of key poses.

A straightforward representation of a gesture would be
a unique sequence {k1, k2, · · · , kng

} of key poses compos-
ing the gesture g. Although effective, this approach would
ignore an alternative way to perform the same gesture.

In this work, we restrict the set of gestures so that
the sequence defining a gesture cannot be extended to a
longer sequence defining another gesture, i.e. gestures are
irreducible. A gesture is then defined uniquely by a set

of key poses sequences, different sequences characterizing
different user’s performances for the same gesture.

This differs slightly from the action graph [10], omit-
ting transition probabilities between key poses, but allow-
ing a decision forest representation, and this will avoid the
need for a neutral/initial pose. We optimize the decision
forest scheme to efficiently identifies gestures in real time.

5.2. Recognizing gestures

Given a gesture training set composed of key pose se-
quences, we build a forest whose nodes represent key poses
and whose leaves are associated to gestures. Each path in
a tree of the forest, from the parent of a leaf g to the root,
represents a possible sequence for gesture g. Thus, each
tree rooted at a key pose k encodes all the gestures whose
final key pose is k, while each leaf stores a gesture identi-
fier. Note that there are at most as many trees as there
are key poses.

During the recognition phase, the key pose classifiers
try to recognize key poses performed by the user. Since we
do not require a neutral/initial pose, we accumulate the
key poses into a circular buffer B of the last identified key
poses. We avoid repeating a key pose in B by checking if
the last added key pose is identical to a newly detected
key pose, eventually updating its duration.

Each time a key pose k is recognized, it is inserted
in B, and a new search is started at the root of the tree
representing gestures ending in k. We search down the
tree by reversely iterating the buffer starting at k. If the
preceding element in B (i.e., the previously detected key
pose) is a child of the current node, the search continues.
Otherwise, the search fails, as there is no trained key pose
sequence which is a suffix of the last performed key pose
sequence. If the search reaches a leaf, the gesture stored
in that leaf is recognized and reported. In practice, the
circular buffer B does not need to be emptied, but we
require that it has enough space to contain the largest
gesture.

The choice of storing the gestures back-to-front in the
decision forest simplifies the recognition work. In this way,
the search is only performed in one tree, avoiding dynamic-
programming backlogs. In practice, the trees are relatively
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thin, i.e. non-matching sequences rapidly fail. Also, this
does not require to know which key pose of B is the first
key pose of the next gesture, since we only use the last key
pose to start the search.

We emphasize that two different key pose sequences
can be safely tagged as the same gesture. Figure 5 shows
an example of a simple forest with six key poses and five
recognizable gestures. Note how two different sequences
of key poses are assigned to the same gesture g2. This
is convenient in applications, for example when a gesture
performed with the right hand is considered to be the same
as the one realized with the left hand. Also, it is possible
to perform the same gesture with one pass through slightly
different sequences of key poses.

Finally, our formulation does not allow sub-gestures
of gestures, to avoid ambiguity. However, if sub-gestures
must be identified, one can easily adapt our method by
representing a sub-gesture as an interior node of the tree,
along the path of its complete gesture.

5.3. Time constraints

Until now, the execution speed of the gesture is not
represented, while it can matter in several applications
such as dance movements Raptis et al. [20]. In our ges-
ture representation, we can include the interval between
consecutive key poses as a time vector [t1, t2, · · · , tn−1] as-
sociated to the circular buffer B. Thus, the same key pose
sequence performed at different speeds can be considered
as executions of gestures belonging to different classes, or
even not considered a gesture at all.

We store in each leaf of the forest one or more time
vectors of the gestures sharing the same corresponding key
pose sequence. Two gestures with the same key pose se-
quence but different timings would lead to sibling leaves.
When searching for gestures in the decision forest, we
choose or discard a gesture based on the time vectors with
two criteria. Let ti be a time vector stored in a leaf repre-
senting the gesture gi and t the time vector of the current
user’s performance. If ‖ti − t‖∞ > T for all time vectors
stored with gi, where T is a small threshold, then gi is dis-
carded. Among all non-discarded gestures on the sibling
leaves, the gesture gi that minimizes ‖ti− t‖1 is chosen as
the recognized gesture.

6. Results

We present in this section the experiments we have
performed to validate the robustness and to evaluate the
performance of the proposed method. We also compare
our method to two state of the art methods, and discuss
its improvements and limitations.

6.1. Experiment setup

To evaluate the robustness of our key pose learning
machine, we designed a key pose set K composed of 18
key poses to be used in all tests. One example of each

Table 1: Trained gestures and average recognition rate from exper-
iments with 10 individuals. Key poses are described in Figure 6.
Note that some gestures have multiple definitions; the good bye ges-
ture is time constrained; and raising the right arm laterally can be
classified as one of two different gestures (quick or slow), depending
on the execution speed, as illustrated in Figure 7.

gesture id key pose seq. rec. rate

Open-Clap g1 k1, k4, k7 99%

Open Arms g2 k1, k7, k4 97%

Turn Next Page g3
k1, k2, k5, k1 94%
k1, k6, k3, k1

Turn Previous Page g4
k1, k5, k2, k1 95%
k1, k3, k6, k1

Good Bye g5 k1, k11 92%
(k11 time constraint: 1 sec)

Quick Raise Right Arm g6 k1, k2, k8 82%
(time constraint: 1 sec)

Slow Raise Right Arm g7 k1, k2, k8 88%
(time constraint: 2 secs)

Lower Right Arm g8 k8, k2, k1 82%

Japanese Greeting g9 k1, k14, k1 100%

Put Hands Up Front g10

k1, k5, k18

96%
k1, k5, k8
k1, k5, k11, k8
k1, k8

Put Hands Up g11 k1, k4, k10 100%

key pose class is shown in Figure 6. Note that we focused
mainly on superior limbs poses, which are more relevant
for natural user interfaces. To create the key pose training
set T , a single trainer performed around 30 examples of
each key pose, resulting in approximately 600 examples of
key poses.

Then, we designed a set G of 11 gestures, as shown in
Table 1. We asked the single trainer to perform 10 times
each gesture from this set, and captured the sequences of
key poses. We also considered time constraints in gesture
g5, g6, g7 to validate our formulation. In the GoodBye ges-
ture g5, the last pose k11 must be kept for 1 second to
characterize that gesture.

Note that K restricts the set of recognizable gestures G
to all finite combinations of key poses from K. Thus, the
design of Kmust take into account the desired recognizable
gesture set G, exactly as complying with a step-by-step
tutorial.

6.2. Key pose recognition

Robustness. We asked the trainer and 10 inexperienced
individuals to perform all trained key poses to evaluate
the recognition rate of our classifiers. Each individual per-
formed each key pose 10 times, with results reported in
Table 2. The key pose learning machine was able to recog-
nize the users’ key poses in most cases, achieving an aver-
age recognition rate of 96.41%. Even in similar poses, like
k13 and k17, the machine succeeded in classifying the right
pose in most examples. We observed that most failures
were in challenging poses to the skeleton tracker, where
the depth image suffers from occlusion, such as the pose
k18. Also, one female individual u10 with large frizzy hair
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Figure 6: Reference key poses for training set T .

was troublesome for the skeleton tracker, and consequently
to our method, still leading to 86% recognition rate. How-
ever, when she tied her hair, closer to average results were
achieved.

Stability. To verify the stability of the key pose learning
machine, we performed out-of-sample tests. In this exper-
iment, we removed at random 20% of the data from our
training set T , computed the SVM classifiers and tried to
classify the removed poses. After executing this experi-
ment 10 times, the average number of false classifications
was only 4.16%, while 3.45% could not be classified.

6.3. Gesture recognition

To check the robustness of the gesture learning ma-
chine, we verbally described the trained gestures to 10 in-
dividuals. Then, we measured the recognition rate of the
machine when the individuals executed each trained ges-
tures 10 times. Excellent results were obtained in the ma-
jority of the gestures, while more tricky gestures achieved
satisfactory results, as shown in Table 1. In particular,
time constrained gestures present the larger performance
variations, although the recognition rates for the time con-
strained gestures g5, g6 and g7 are above 80%. Comparing
the results of gestures g6 and g7 (Figure 7), which are rep-
resented by the same key poses but performed at different
speeds, we observe that our method achieves better recog-
nition rates when gestures are performed slower.

6.4. Performance

During the preprocessing phase, the only, albeit small,
bottleneck is computing the SVM binary classifiers func-
tions. For a large training set with around 2 000 key pose

examples of 18 classes, the 18 functions were computed in
3.9 secs, with an average of 105 support vectors per binary
classifier. Note that these functions only need to be com-
puted once, as long as the training set remains unchanged.

During training and recognition phases of our experi-
ments, performance allowed real time interaction: the key
pose learning machine, composed of several SVM binary
classifiers, was easily capable of recognizing key poses at
30fps (the maximum Kinect sensor frame rate) on a Core
2 Duo laptop at 2.53GHz.

Also, on the one hand, most gestures are composed of
just a few key poses, generating decision trees with very
low depths. On the other hand, each trees width depends
on the number of trained gestures, which is also a low
number in most cases. The decision forest formulation
leads to very low search complexity in practice and did
not impact on the total execution time.

6.5. Comparison

We compared our approach to two state of the art
methods, and the conference version of this work that did
not use the key pose kernel [15]. In the work of Li et
al. [11], three subsets of eight gestures each are selected
from a dataset of 20 gestures, as shown in Table 3.

The same dataset and subsets are used to compare with
[11], [27] and our method, although we extract skeletons
from the original depth maps. For each subset AS1, AS2
and AS3, we trained key poses and gestures using the skele-
tons of half of the subjects from the dataset. We manually
labeled key poses for each performance, feeding the ges-
tures learning machine from the resulting pose sequence.
Then, we performed cross subject tests, trying to recog-
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Figure 7: Time constrained gestures: the machine is capable of recognizing and distinguishing between gestures composed of the same key
poses, but performed at different speeds. In our tests, a trainer taught the machine that a slow lateral raise of its right arm (top) is a different
gesture than a quick raise (bottom). High recognition rates were obtained, as shown in Table 1.

Table 2: Number of correctly recognized key poses with 10 individuals, performing variations of each key pose 10 times. u1 is the trainer
user, u110 is the female with long frizzy hair, showing the worst results, and u210 is the same female with tied hair, achieving better results.
All key poses were very well recognized by the classifiers, except for the last one, due to skeleton tracking issues with occlusion.

key pose id
recognized key poses per user total

u1 u2 u3 u4 u5 u6 u7 u8 u9 u1
10 u2

10 (%)

Neutral k1 10 10 10 10 10 10 10 10 10 10 10 100.00
Right Hand Right k2 10 10 10 10 10 10 10 10 10 10 10 100.00
Left Hand Left k3 10 10 10 10 10 10 9 10 10 10 10 100.00
Arms Open k4 10 10 10 10 10 10 10 9 10 7 10 96.36
Right Hand Front k5 10 10 10 10 10 10 10 10 10 8 9 97.27
Left Hand Front k6 10 10 10 10 10 10 10 10 10 9 10 99.09
Both Hands Front k7 10 10 9 10 10 10 10 10 10 9 10 98.18
Right Hand Up k8 10 10 10 10 10 10 10 10 10 10 10 100.00
Left Hand Up k9 10 10 10 10 10 10 10 10 10 9 10 99.09
Both Hands Up k10 10 10 10 10 10 10 10 10 10 10 10 100.00
Right Hand 90◦ k11 10 9 9 10 10 10 10 10 10 8 10 96.36
Left Hand 90◦ k12 10 10 10 10 10 8 10 10 10 7 10 95.45
Both Hands 90◦ k13 10 10 10 10 10 10 10 10 10 10 10 100.00
Inclined Front k14 10 10 9 10 10 8 10 10 10 5 7 90.00
Hands-on-Hip Crossed k15 9 8 8 10 8 10 10 9 8 8 9 88.18
Hand-On-Hip k16 10 10 10 10 10 10 10 10 10 10 10 100.00
Hands on Head k17 10 10 10 8 10 10 8 9 10 10 6 91.81
Right Hand 90◦ Back k18 8 10 9 9 7 9 9 10 10 5 7 84.54

total (%) 98.3 98.3 96.7 98.3 97.2 97.2 98.3 97.8 98.9 86.1 93.3

nize non-trained gesture samples using the corresponding
training set.

The obtained results are shown in Table 4. Note that
excellent results were obtained in AS1 and AS3, outper-
forming [11] and [27], while AS2 performed badly. The
low performance of AS2 recognition was mainly due to
three gestures composed of not very distinctive key poses:
draw x, draw circle and draw tick. While these gestures

required very subtle movements, many subjects executed
them through slightly different poses.

6.6. Limitations

Most robustness issues were mainly due to two reasons:
skeleton tracking and small movements, like drawing an x.
Using a single Kinect, the user must be in front of the
sensor, since side positions can occlude joints, degrading
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Table 3: Recognition rate comparison on the gesture dataset of Li et
al. [11]

AS1 AS2 AS3

Horizontal arm wave High arm wave High throw

Hammer Hand catch Forward kick

Forward punch Draw x Side kick

High throw Draw tick Jogging

Hand clap Draw circle Tennis swing

Bend Two hand wave Tennis serve

Pickup & throw Side boxing Pickup & throw

Table 4: Comparison of recognition rate through a cross-subject test.

Gesture Li et al. Vieira et al. Euclidean Pose
subset [11] [27] kernel [15] kernel

AS1 72.9% 84.7% 93.5% 96.0%

AS2 71.9% 81.3% 52.0% 57.1%

AS3 79.2% 88.4% 95.4% 97.3%

Average 74.7% 84.8% 80.3% 83.5 %

the skeleton. Moreover, the skeleton tracker can gener-
ate different skeletons for different individuals performing
the same pose due to the skeleton extraction we use [23].
These differences can degrade the invariance of pose de-
scriptors, with frequent outlier skeletons. As opposed to
the Action Graph [10], our method is limited to gestures
composed of distinctive key poses. Gestures that requires
subtle movements can be troublesome for our learning ma-
chines. Finally, relying on key pose design and training
may not be the friendliest solution for an occasional user.

7. Future Work

As the skeleton extraction and tracking algorithms still
cope with a large amount of noise from the sensor, robust-
ness is a main issue for future work. A common problem
for these algorithms is the 3D occlusion of some joint posi-
tions, requiring the user to face the camera to avoid outlier
skeletons. Working with two or more Kinect sensors could
be of help to robustly capture and process the skeleton
stream.

The algorithm introduced here may be improved in two
different directions. First, the use of time in recognizing
gestures may be improved to distinguish complex gestures,
using complementary SVM machines, maybe incorporat-
ing velocity of the joints. Second, automatic key pose gen-
eration from unrecognized gestures may greatly ease the
usability of the interface. In this setting, the computer
should be able to decide the best set of key poses to train,
in order to get good results in gesture recognition.

The authors would like to thank Brazilian institutions
CNPq, FAPEAL, FAPERJ and FAPEMIG for partially
financing this research.
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