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Current Scenario

XBOX 360

Popularization of real time depth sensors

Microsoft Kinect Sensor

Development of high quality Natural User Interfaces (NUI)
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Current Scenario

XBOX 360

Challenging task! Gestures performed at
different speeds and/or sequence of poses
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Our approach:
key poses learning

{ﬁ\v W Wﬁrv =
;

-

Gestures can be characterized by a few extreme poses!

v Real-time gesture learning and recognition

v Ideal for the average inexperienced user

Miranda et al., 2012 Real-time gesture recognition from depth data through key poses learning and decision forests



Outline

|. Related Work

2. Overview

3. Joint-angles Representation

4. Key Pose Statistical Learning

5. Gesture Recognition Through Decision Forests

6. Results

Miranda et al., 2012 Real-time gesture recognition from depth data through key poses learning and decision forests



Related Work

Local methods Global methods

Samplad 3D points

B o idivk i Lv and Nevatia (2007)
S I\ For o i
& M .
Q s Parametric methods
S o) -2 D 20 B
Q1 3.
§ o IR
PR
_, ".-L‘,.’ ——
Depth map \: X ?"‘-gi--- / —
’: ".:1 :. 7, "W 1 s
e o ' —
oo | il

R el
A 0o A

Projection of the
sampled 3D poinis

Li et al (2010)

N —e g

gt e

Miranda et al., 2012 Real-time gesture recognition from depth data through key poses learning and decision forests



Overview

key pose

pose descriptor extraction : :
learning machine

(
training
set
kinect (%1, ,215)
| - \
multi-class
(0179017"' 7997909777> SVM
S W,
gesture learning machine
i @ _ training A\ \
O, e ® @ = key pose
gesture = @ @ @
g é . g . ) (k1 tq) ((ka, tz)* = —((kn, tn)
L decision forest buffer )

Miranda et al., 2012 Real-time gesture recognition from depth data through key poses learning and decision forests



Overview: training key poses
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Overview: recognizing key poses
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Overview: training gestures
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Skeletons from Kinect Sensor

Real-time depth sensing system
streaming depth data and skeletons at 30fps
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pose descriptor extraction

Joint-Angles Pose Descriptor = = 7%

Objective: Concise and invariant representation of relevant
pose information.

Improvement of Raptis et al (201 |) local spherical coordinates.

(%1,332,...,3315)61&45 (‘917@17"'7997909777)61&19

| st degree joints: elbows, knees and head
2nd degree joints: hands, feet.
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pose descriptor extraction

How to compute the
local bases?

| st degree joints:

Miranda et al., 2012 Real-time gesture recognition from depth data through key poses learning and decision forests



pose descriptor extraction

How to compute the
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How to compute the
local bases?

| st degree joints:

0 - angle between u and w

¢ - angle between ¢ and the projection of @ in 7
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How to compute the {
local bases?

2nd degree joints:
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How to compute the
local bases?

2nd degree joints:

Rotate {@, 7.t} by
B = arccos (W, @)
around

b=w Xu

0 - angle between rotated ¥ and ¢

’ ¢ - angle between rotated ¢ and the projection of §in =
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Supervised Learning Machine

Predefined key pose classes: K = {ki,ko,... kx| }

Machine

Training Set
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key pose
learning machine
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Support Vector Machines (SVM)

SVM

Binary classifier
§g:RF = {—1,1}

v — sign (f(v)) ={-1,1}
fw) = Z@j si(p (v),p(v))+b

v/ Non-linear classification

V Efficiently computed for small training sets
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key pose
learning machine

Multi-class SVM formulation | ‘ ‘
One-versus-all approach T

One binary classifier for each key pose p € K :
fp(v) = Zjesv@j¢p(cj) d(vj,v)+ 0,

1 ifc=np,
where v;(c) = { —1  otherwise,

Vo —V 2
d(v1,Vva) = exp (_ | 22021” )
Voting process:

7 { q = argmax fp(v) if fq(v) > 0,

-1 otherwise.
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Overview
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gesture learning machine

Gestures as key pose

) @) - ()

sequences -

Gesture representation: g = {ki,ka, - ,kpn, }, ki€ K.
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gesture learning machine
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Decision Forests

Each node represents a key pose

One tree per key pose

gesture learning machine

Each root-leaf path represents a gesture stored back-to-front

Two paths may represent the same gesture

g1

g2
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gesture learning machine
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gesture learning machine
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Results
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Experiment Setup

One trainer
|8 trained key poses (approx. 30 examples per key pose)

|0 trained gestures (approx. |0 executions per gesture)

ATATARAL R

Neutral Right Hand Left Hand Arms Open Right Hand Left Hand Both Hands nght Hand Left Hand
Right Left Front Front Front Up

(EREAARTA

Both Hands Right Hand Left Hand Both Hands  Inclined Hands On  Hands On Hands On  Right Hand
Up 90° 90° 90° Front Hip Crossed Hip Head 90° Back
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Key pose recognition: robustness

|0 inexperienced individuals performed trained key poses |0 times

, . recognized key poses per user total
key pose id U1 U2 U3 Uy Us Ug Uy Us Ug -u,%o 'u.%o (%)
Neutral k1 10 10 10 10 10 10 10 10 10 10 10 100.00
Right Hand Right ko 10 10 10 10 10 10 10 10 10 10 3 98.18
Left Hand Left k3 10 10 10 9 10 10 9 10 10 10 10 98.18
Arms Open k4 10 10 10 7 10 10 10 9 10 7 10 93.63
Right Hand Front ks 10 10 10 10 10 10 10 10 10 3 7 95.45
Left Hand Front ke 10 10 0 10 10 10 10 10 10 10 10 99.09
Both Hands Front k7 10 10 10 10 10 10 10 10 10 10 10 100.00
Right Hand Up ks 10 10 10 10 10 10 10 10 10 10 10 100.00
Left Hand Up ko 10 10 10 10 10 9 10 10 10 9 10 98.18
Both Hands Up k1o 10 10 10 10 10 10 10 10 10 10 10 100.00
Right Hand 90° k11 10 8 9 10 10 10 10 10 8 10 10 95.45
Left Hand 90° k12 10 10 10 10 10 6 10 10 10 5 10 91.81
Both Hands 90° ki3 10 10 10 10 10 10 10 10 10 10 10 100.00
Inclined Front k14 8 10 10 10 10 8 10 10 10 5 7 89.09
Hands-on-Hip Crossed | kis 7 8 6 8 8 10 10 10 8 10 8 84.54
Hand-On-Hip kig 10 10 10 10 10 10 10 9 10 10 10 99.09
Hands on Head k17 9 10 10 3 10 10 9 7 10 10 6 90.00
Right Hand 90° Back k1s 8 10 9 6 7 7 7 10 10 3 8 77.27
total (%) 95.5 97.7 96.1 933 97.2 944 972 97.2 977 87.2 91.11

Average recognition rate: 94.84%
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Key pose recognition: stability

Out-of-sample tests:

| .Remove 20% of training set data;
2.Compute SVM classifier;

3.Try to classify removed training data.

Results after |10 experiments:

False classifications: 4.16%

Unclassified key poses: 3.45%
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Key pose recognition
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Gesture recognition

|0 inexperienced individuals performed trained gestures 10 times

gesture id | Kkey pose seq. rec. rate
Open-Clap g1 ki, ka, k7 99 %
Open Arms g2 ki, k7, kg 96 %
) ki, ko, ks, k1
Turn Next Page g3 Ky ke, ks, ky 83 %
Turn Previous Page g4 21 2: 22 21 91 %
Raise Right Arm Laterally gs ki, ko, ks 80%
Lower Right Arm Laterally ge ks, ko, k1 78 %
Good Bye (k11 time constraint:1sec.) gr kl, kll 92 %
Japanese Greeting gs | ki1, k1a, k1 100 %
k’1, k75, k?lg
Put Hands Up Front go ki, ks, ks 96 %
]11, ]{75, kll, ]18
kl, 118
Put Hands Up Laterally gio | k1, ka, k1o 100%
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Gesture recognition
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Performance

Preprocessing bottleneck: computing SVM classifiers

For a training set of 2,000 key pose examples of |8 classes:
|8 functions were computed in 3.9 secs

Negligible performance during training/recognition phases

gesture learning machine

(- ) rainin
® @ | [ "a”
fo 888 -
afjololo l_[(km}cm : ]
decision forest buffer

Usually very low tree depths
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Comparison

Dataset from Li et al (2010): 20 gestures, 10 individuals, 3 executions

AS1 AS2 AS3
Horizontal arm wave | High arm wave High throw
Hammer Hand catch Forward kick
Forward punch Draw x Side kick
High throw Draw tick Jogging
Hand clap Draw circle Tennis swing
Bend Two hand wave Tennis serve
Pickup & throw Side boxing Pickup & throw

Cross-subject test:

Gesture subset | Li [10] | Vieira [15] | our method
AS1 72.9% | 84.7% 93.5%
AS2 71.9% | 81.3% 52.0%
AS3 79.2% | 88.4% 95.4%
Average 74.7% | 84.8% 80.3 %
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Comparison

Dataset from Li et al (2010): 20 gestures, 10 individuals, 3 executions

AS1 AS2 AS3
Horizontal arm wave | High arm wave High throw
Hammer Hand catch Forward kick
Forward punch Draw x Side kick
High throw Draw tick Jogging
Hand clap Draw circle Tennis swing
Bend Two hand wave Tennis serve
Pickup & throw Side boxing Pickup & throw

Cross-subject test:

Gesture subset | Li [10] | Vieira [15] | our method Delicate gestures
AS2 71.9% | 81.3%

AS3 79.2% 8&8.4% S.4 %0

Average T4.7% | 84.8% 80.3 %
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Limitations

e Robustness issues

Skeleton tracking

Delicate gestures

e Key pose design not the friendliest solution

AMCATARAA D

Neutral Right Hand Left Hand Arms Open Right Hand Left Hand Both Hands nght Hand Left Hand
Right Left Front Front Front

(RN AT

Both Hands nght Hand cht Hand Both Hand% Inclined Hands On  Hands On Hands On  Right Hand
Front Hip Crossed Hip Head 90° Back
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Future VWork

v/ Automatic key pose generation
v Work on skeleton tracking algorithms (More than | Kinect?)
v Improve time constrained gesture recognition

v Take into account key pose descriptor periodicity
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Thank you for your attention!
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Thank you for your attention!

Questions!
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