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Current Scenario

Microsoft Kinect Sensor

Popularization of real time depth sensors

Development of high quality Natural User Interfaces (NUI)
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Current Scenario

Microsoft Kinect Sensor

Popularization of real time depth sensors

Challenging task! Gestures performed at 
different speeds and/or sequence of poses



Real-time gesture recognition from depth data through key poses learning and decision forestsMiranda et al., 2012

Our approach: 
key poses learning

✓Real-time gesture learning and recognition

✓Ideal for the average inexperienced user

Gestures can be characterized by a few extreme poses! 
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Related Work
Local methods

Li et al (2010)

Global methods

Lv and Nevatia (2007)

Parametric methods

Raptis et al (2011)
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Overview
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Overview: training key poses
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Skeletons from Kinect Sensor

Real-time depth sensing system 
streaming depth data and skeletons at 30fps
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Joint-Angles Pose Descriptor

Objective: Concise and invariant representation of relevant 
pose information.

Improvement of Raptis et al (2011) local spherical coordinates.

(✓1,'1, . . . , ✓9,'9, ⌘) 2 R19(x1, x2, . . . , x15) 2 R45

1st degree joints: elbows, knees and head
2nd degree joints: hands, feet.
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How to compute the 
local bases?

1st degree joints:
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How to compute the 
local bases?

1st degree joints:

' - angle between

~t and the projection of ~w in ⇡

✓ - angle between ~u and ~w

~w



Real-time gesture recognition from depth data through key poses learning and decision forestsMiranda et al., 2012

� = arccos(~w, ~u)

b = ~w ⇥ ~u

Rotate by
�
~u,~r,~t

 

around

~w
~q

How to compute the 
local bases?

2nd degree joints:
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� = arccos(~w, ~u)

b = ~w ⇥ ~u

Rotate by
�
~u,~r,~t

 

around

~w
~q

' - angle between rotated

~t and the projection of ~q in ⇡

✓ - angle between rotated ~u and ~q

How to compute the 
local bases?

2nd degree joints:
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Supervised Learning Machine

Predefined key pose classes: K =
�
k1, k2, . . . , k|K|

 

Machine

Training	
  Set
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Supervised Learning Machine

Predefined key pose classes: K =
�
k1, k2, . . . , k|K|

 

Machine

Training	
  Set

(v1, c1)

(v2, c2)

...

(vn, cn)

(✓1,'1, . . . , ✓9,'9, ⌘) 2 R19, c1 2 K
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Supervised Learning Machine

Predefined key pose classes: K =
�
k1, k2, . . . , k|K|

 

Machine

Training	
  Set

(v1, c1)

(v2, c2)

...

(vn, cn)

ki

(✓1,'1, . . . , ✓9,'9, ⌘) 2 R19, c1 2 K

?
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Support  Vector Machines (SVM)

✓Non-linear classification

✓Efficiently computed for small training sets

Binary classifier

f̂(v) =
⇤

j

�j sj

�
⇥ (vj) , ⇥ (v)

⇥
+ b

ĝ : Rk ⇥ {�1, 1}

v ⇥ sign
�
f̂(v)

⇥
= {�1, 1}

subject to ,
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Multi-class SVM formulation

One binary classifier for each key pose             :p 2 K

One-versus-all approach

f̂p(v) =
P

j2SV ↵j p(cj) �(vj ,v) + b,

where  p(c) =

⇢
1 if c = p,

�1 otherwise,

�(v1,v2) = exp

⇣
�kv2�v1k2

2�2

⌘

ˆf(v) =

(
q = argmax

p
ˆfp(v) if

ˆfq(v) > 0,

-1 otherwise.

Voting process:



Real-time gesture recognition from depth data through key poses learning and decision forestsMiranda et al., 2012

Overview

(k1 , t1 ) (k2 , t2 ) ... (kn , tn )

k1

k2 k6

k3 k4 k4

k5g1 g2

g3

k3

k6 k4 k5

k4 k3 k1

g4 g5 g2

1



Real-time gesture recognition from depth data through key poses learning and decision forestsMiranda et al., 2012

Overview

(k1 , t1 ) (k2 , t2 ) ... (kn , tn )

k1

k2 k6

k3 k4 k4

k5g1 g2

g3

k3

k6 k4 k5

k4 k3 k1

g4 g5 g2

1



Real-time gesture recognition from depth data through key poses learning and decision forestsMiranda et al., 2012

Gestures as key pose
sequences

Gesture representation: g = {k1, k2, · · · , kng}, ki 2 K.
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Decision Forests

Each node represents a key pose

One tree per key pose

Each root-leaf path represents a gesture stored back-to-front

Two paths may represent the same gesture
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Real-time gesture 
recognition

key pose 
learning machine
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Real-time gesture 
recognition

key pose 
learning machine
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decision forest

ki+n

gesture
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Real-time gesture 
recognition: Example

decision forest
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Time constraints

Time vector: interval t = [t1, t2, · · · , tn�1] k1
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...

g1 g2

Time
test

�1

Time test

for each time vector    found on the leafti

if
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return     that minimizesgi
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{t1, t2}

between consecutive key poses

(k1 , t1 ) (k2 , t2 ) ... (kn , tn )

k1

k2 k6

k3 k4 k4

k5g1 g2

g3

k3

k6 k4 k5

k4 k3 k1

g4 g5 g2



Real-time gesture recognition from depth data through key poses learning and decision forestsMiranda et al., 2012

Results
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Experiment Setup
One trainer

18 trained key poses (approx. 30 examples per key pose)

10 trained gestures (approx. 10  executions per gesture)
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Key pose recognition: robustness
10 inexperienced individuals performed trained key poses 10 times

Average recognition rate: 94.84%
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Key pose recognition: stability

Out-of-sample tests:

1.Remove 20% of training set data;

2.Compute SVM classifier; 

3.Try to classify removed training data.

Results after 10 experiments:

False classifications: 4.16%

Unclassified key poses: 3.45%
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Key pose recognition
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Gesture recognition
10 inexperienced individuals performed trained gestures 10 times
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Gesture recognition
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Performance
Preprocessing bottleneck: computing SVM classifiers

Negligible performance during training/recognition phases

For a training set of 2,000 key pose examples of 18 classes:
 18 functions were computed in 3.9 secs
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Usually very low tree depths
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Comparison
Dataset from Li et al (2010): 20 gestures, 10 individuals, 3 executions

Cross-subject test:



Real-time gesture recognition from depth data through key poses learning and decision forestsMiranda et al., 2012

Comparison
Dataset from Li et al (2010): 20 gestures, 10 individuals, 3 executions

Cross-subject test:

Delicate gestures
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Limitations
•Robustness issues

Skeleton tracking

Delicate gestures

•Key pose design not the friendliest solution
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Future Work

✓Automatic key pose generation

✓Work on skeleton tracking algorithms (More than 1 Kinect?)

✓Improve time constrained gesture recognition

✓Take into account key pose descriptor periodicity
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