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Abstract: We present a human-robot natural interaction approach based on teleoperation through body gestures. More
specifically, we propose an interface where the user can use his hand to intuitively control the position and
status (open/closed) of a robotic arm gripper. In this work, we employ a 6-DOF (six degrees-of-freedom)
industrial manipulator which mimics user movements in real-time, positioning the end effector as if the indi-
vidual was looking into a mirror, entailing a natural and intuitive interface. The controlling hand of the user is
tracked using body skeletons acquired from a Microsoft Kinect sensor, while a Convolutional Neural Network
recognizes whether the hand is opened or closed using depth data. The network was trained on hand images
collected from several individuals, in different orientations, resulting in a robust classifier that performs well
regardless of user location or orientation. There is no need for wearable devices, such as gloves or wrist-
bands. We present results of experiments that reveal high performance of the proposed approach to recognize
both the user hand position and its status (open/closed); and experiments to demonstrate the robustness and
applicability of the proposed approach to industrial tasks.

1 Introduction

Recent advances in artificial intelligence have al-
lowed the scientific community to research and de-
velop innovative natural human-machine interfaces.
Emerging deep learning methods have allowed peo-
ple to interact with virtual assistants, robotic pets and
Natural User Interfaces (NUI) through voice com-
mands and gestures (Schmidhuber, 2015).

Natural User Interfaces (NUI) are required to
be easy (highly learnable), ergonomic and non-
intrusive (LaViola Jr et al., 2017). In particular, cloth-
ing requirements and counter-intuitive commands are
undesired, since it should feel comfortable for a good
experience. These requirements are even more critical
for applications in robotics control, where accuracy is
crucial and latency is not desirable.

Human body gestures have been adopted in the
last years for NUI as they potentially satisfy such re-
quirements (Miranda et al., 2012; LaViola Jr et al.,
2017). However, the correct identification and repre-
sentation of body parts and movements in real-time
is still a topic of great interest from different ar-
eas (Cheng et al., 2016).

We propose a user-friendly and intuitive Natural
User Interface (NUI), where a 6-Degrees-of-Freedom

(6-DOF) robot arm end-effector is controlled by mir-
roring the hand of the user. The user hand (position
and image) is extracted from a body skeleton model
obtained from a Microsoft Kinect. Such data is used
to control both: (1) the robot gripper position, after an
appropriate invariant encoding/decoding, and (2) its
state (open or closed) according to the respective user
hand state.

To classify hand poses, we use Convolutional
Neural Networks (CNNs) trained by small hand depth
images, which are cropped from the larger full body
depth image ensuring translational and scale invari-
ance, by centering on the projection of the hand po-
sition with a depth-dependent radius. Thus, both
skeleton and depth data are used by our hybrid ap-
proach, tested in real-time with an industrial-grade 6-
DOF robot arm. Potential real-world applications that
could affect user physical integrity, such as: (i) land-
slip terrains; (ii) compromised buildings; (iii) cable
and gas tunnels; (iv) areas with explosives.

In summary, this paper has the following contri-
butions:

• We propose the use of an invariant representation
to mimic human moves to a robot arm in an intu-
itive fashion;



• We collected a balanced dataset (publicly avail-
able) composed by 160,000 depth images of open
and closed hands from 20 different individuals;

• We present image processing algorithms to ex-
tract and pre-filter human hand depth images from
large depth images. Such algorithms are applied
to provide scale and background invariant images
to the CNN;

• We show that CNNs are robust to recognize hu-
man hand poses from small depth images, achiev-
ing very high accuracy.

• We propose a filter based on temporal coherence
to improve per-frame classification performance;

• We show results of experiments performed to val-
idate the method in real-world tasks.

2 Related Work

Authors in (Xiao et al., 2014) used information
from the upper-body such as head, arm position and
hand posture to implement a Human-Robot Interac-
tion (HRI) system. Differently from our approach,
which does not require any wearable device, they used
an immersion glove (CyberGlove II1).

Kruse et al.(Kruse et al., 2015) used a Kinect sen-
sor to track and map movements of both human arms
to a robotic apparatus comprising a torso and two 7-
DOF (Degrees-of-Freedom) manipulators. The pur-
pose was to evaluate the system stability whilst sup-
porting big objects using a closed-loop force control.

Kalman filters were employed by Du et al. (Du
et al., 2014) on data from an Inertial Measurement
Unit (IMU) device, along with a Kinect sensor, to
determine translation and orientation of the human
hand. They propose a method to tackle the cumula-
tive error inherent to the inertial measuring unit. Our
system, in contrast, maps the absolute position of the
hand relative to the user’s torso, therefore invariant to
body translation/rotation.

Recently, deep learning models have shown out-
standing results for image classification, and some
works have been proposed to recognize hand poses
from images (Tompson et al., 2014; Yuan et al., 2017;
Sharp et al., 2015). Fine classification of subtle hand
poses is possible by constraining the acquisition of
hand images: the hand is near the sensor; and the
space of allowed body poses is very limited. In con-
trast, we face the challenge of recognizing hand poses
from varying body poses, hand orientations and dis-
tances to the sensor. It is worth noting that hand

1http://www.cyberglovesystems.com/

pose images acquired from variable distances contain
hands at different scales and levels of detail, which we
successfully handle in our approach.

3 Methodology

Our solution addresses two main challenges: lo-
cating, tracking and mirroring the hand movements
on the robot arm; and recognizing hand poses to
send binary commands to the robot gripper. Both in
real-time. As depicted in Fig. 1, we adopt a Kinect
v1 (Microsoft, 2018) depth sensor to locate and cap-
ture depth images of a user at 30fps. These images
are used in both training and recognition phases. Al-
though more recent depth sensors can provide even
better features for hand pose recognition, Kinect v1
was sufficient to achieve high accuracy in this work.

To perform hand location and tracking, we pro-
pose the use of a parametric approach based on user
skeleton models (Shotton et al., 2011; OpenNI, 2018).
To provide an intuitive interface to the user, we em-
ploy a representation of the hand position that is in-
variant to global translations and rotations of the his
body. In addition, this representation can be em-
ployed to mirror movements in a robot arm.

The hand is located and cropped from the full
body depth image using the skeleton’s projection in
2d image space. The cropped image is then filtered
before being stored into the dataset or used for in-
ference. The hand pose recognition is carried out
by a supervised learning approach: after collecting
a large training set composed of hand images (open
or closed), we train a Convolutional Neural Network
(CNN) to act as a binary classifier. In what follows,
we describe each step of the method in detail.

3.1 Depth image preprocessing

Depth sensors are capable of estimating their distance
(or depth) to visible objects in a scene. A depth im-
age is defined by a function f : U ⊂ R2→ R, where
z = f (x,y) represents the distance from the sensor to
the object that is projected at pixel (x,y). Using the
official Kinect SDK (Microsoft, 2018), we extract, in
real-time, a skeleton composed of relevant body joint
positions, given in 3d Cartesian coordinates, includ-
ing the controlling hand.

Let p(t) ∈ R3 be the controlling hand position
given by the sensor at frame t, and p̃(t) = (x(t),y(t))
the projection of p(t) in the image space. To extract
the hand region R ⊂U from the depth image domain,
we set the center pixel of R to p̃ and its dimensions to
2L×2L, where L is given in pixels. Since the distance
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Figure 1: Method overview: a depth image is captured in real-time using a depth sensor (top-left); the skeleton is obtained
(bottom-left) and used to locate the hand region (top-right); the hand is then cropped using the position p(t) given by the
skeleton; segmented or binarized images are computed and stored in a hand pose training set, which is later used to train a
CNN (blue), or evaluated by a previously trained CNN that is capable of recognizing if the hand is opened or closed (pink).
CNN classifications are sequentially stored in a pose buffer for temporal coherence filtering. Commands sent to the robot are
highlighted in gray.

from the user (and the controlling hand) to the sensor
may vary over time, the hand size (or scale) in the
image may also vary. Considering that depth images
given by the Kinect sensor are generated by perspec-
tive projection, the hand size is inversely proportional
to its distance to the sensor. Thus, we let L vary over
time as a function of the hand distance, as

L(t) =
K

d(t)
,

where K is a proportionality constant and d(t) is the
distance from p(t) to the sensor in milimeters.

We empirically tuned K by analyzing several
depth images from distinct users performing various
poses. We searched for the smaller value of K whose
generated images covered the whole hand projected
area. By applying these criteria, we guarantee images
that are small but still representative for the follow-
ing phase of learning and recognition of hand poses.
In this experiment, we found an optimum value of
K = 62.

Let f ′ : R ⊂ R2→ R be the cropped hand image.
This image may include, in addition to the hand, other
background objects or even parts of the user body.
To remove such unwanted data, we experimented two
filtered representations extracted from f ′ for training
and recognition of hand poses: segmented and bi-

narized images. To extract the hand from the back-
ground, we consider that the hand is the closest object
to the sensor and apply a depth thresholding filter, re-
sulting in the segmented image given by

s(x,y) =

{
f ′(x,y), f ′(x,y)≤ Dmin +T
0, f ′(x,y)> Dmin +T ,

where Dmin = min
R

( f ′(x,y)), i.e. the depth of the clos-

est hand pixel to the sensor; and T is a depth threshold
used to extract the hand.

Alternatively, we compute binarized images from
segmented images by

b(x,y) =

{
1, f ′(x,y)≤ Dmin +T
0, f ′(x,y)> Dmin +T .

Both representations are experimented and compared.

3.2 Invariant Human-Robot Mimicking

In this section we focus on mapping the user body
movement to the robot movement by using a local co-
ordinate system that is invariant under rotations and
translations of the body skeleton. We are interested in
the relative position of the hand (which we consider to
be the right hand) relative to the body. We use the fol-
lowing joints: right shoulder ( jrs); left shoulder ( jls);



shoulders center ( jsc); spine ( jsp); and right hand ( jrh)
(cf. Fig. 2). We compute the coordinates of jrh w.r.t a
local coordinate system centered at joint jrs.

The basis of the coordinate system must vary with
body movement. We consider that the torso plane is
the better reference for body movement, and compute
a vertical unitary vector (v̂t ) and a horizontal unitary
vector, (ĥt ) given by

v̂t =
jsc− jsp

‖ jsc− jsp‖
, ĥt =

jls− jrs

‖ jls− jrs‖
.

The third vector of our basis is the normal vector of
the torso plane (n̂t ), given by the normalized cross
product

n̂t =
ĥt × v̂t

‖ĥt × v̂t‖
.

The position of the right hand is initially given by u =−−−→
jrs jrh. Since users may have different arm lengths, we
normalize u using the sum of the lengths of the arm
and forearm vectors:

ũ =
jrh− jrs

‖ jre− jrs‖+‖ jrh− jre‖
.

Then, we change the basis of vector ũ to the ba-
sis
{

n̂t , ĥt , v̂t
}

, obtaining the invariant coordinates
(u1,u2,u3). Finally, the goal position of the robot
gripper is given by

PG =

 η ωX u1X̂0
η ωY u2Ŷ0

δz +ωZ u3Ẑ0

 , (1)

where;
•
{

X̂0,Ŷ0, Ẑ0
}

is the orthonormal basis of the robot
coordinate system;

Figure 2: Example of mapping between body skeletons
(left) and robot (right) coordinate systems: the right shoul-
der joint jrs is mapped to the fixed point P1 lying on the
vertical axis Ẑ0 of the robot coordinate system. The right
hand joint is then mapped to the goal point PG located at the
tip of the gripper. Note that when the user moves or rotates
w.r.t the scene keeping the same relative hand position to
the body, the robot remains stationary.

• ωX , ωY and ωZ are robot-dependent scale factors;

• δZ is an offset in the vertical direction to regulate
the operation height;

• η ∈ {−1,1} represents an operation mode, which
is +1 for direct operation, or −1 for mirror op-
eration, in which case the axes on the horizontal
plane of the robot are inverted.

3.3 Convolutional Neural Networks for
Hand Pose Classification

To train our classifier, we collected a dataset compris-
ing labeled hand images from both segmented and bi-
narized representations. Then, we assessed which one
performed better for classification.

Training and Classification At the training stage,
several examples of each hand class were feed as
training data into a Convolutional Neural Network,
generating a binary classification model. Then, in
the classification stage, a user performs any of the
trained hand poses, his hand image representation
(segmented or binarized) is calculated and given as
input to the trained CNN. Finally, the classifier pre-
dicts, in real-time, which class the image belongs to.

Architecture The class of Convolutional Neural
Networks for image classification includes models
that: receive as input any kind of data structured as
n-dimensional images; perform convolutions on such
data in a few convolutional layers, possibly using
max-pooling and dropout; flatten the resulting fea-
ture maps into an uni-dimensional array before feed-
ing a few dense layers; and finally reach an out-
put layer with a softmax activation function. Several
hyper-parameters determine a unique network struc-
ture, such as the number of convolutional and dense
layers, the convolutional filter sizes, and the number
of units of each layer. To find the most appropriate
combination of hyper-parameters for hand pose clas-
sification, we performed a grid search, evaluating sev-
eral combinations of values. Fig. 3 shows the best net-
work structure found in the experiments described in
Section 4.2.

All experimented networks receive as input a
single-channel image with fixed dimensions of 50 by
50 pixels. The input data is filtered by 1 or 2 convo-
lutional layers (C), where each layer may apply 3×3
or 5× 5 filters (F). For each convolutional layer, we
use 8, 16 or 32 filters per layer (S). After each con-
volutional layer, we include a max-pooling layer with
2×2 receptive fields to downsample the feature maps.



Figure 3: Architecture of the best CNN found in the experiments of Section 4.

The resulting features are then flattened into a uni-
dimensional array that is given as input to dense lay-
ers. We experimented the use of 1 or 2 dense layers
(U), with 80, 120 or 160 hidden units (N) each. In
all convolutional and dense layers, we use the rec-
tified linear (ReLU) as activation function. Finally,
a softmax dense layer with 2 neurons outputs the fi-
nal probability distribution. Note that, to generalize
these networks for the classification of n poses, one
can simply change the number of neurons of softmax
layer to n. In the next Section, we present the results
of the experiments, showing the best hyperparameters
combinations found.

3.4 Temporal Filtering

CNN robustness may be decreased due to external
factors such as: depth sensor noise; inaccurate skele-
ton tracking; incompatible user poses, such as keep-
ing the hand occluded or near other objects in the
scene. However, a robot may drop and break an ob-
ject if, during a pick-and-place task, a closed hand is
incorrectly classified as open.

To improve robustness in such situations, we pro-
pose to take advantage of temporal coherence. We
consider that, in order to control a robot, the user must
keep the same command along a time interval of rea-
sonable duration. This contrasts with inaccurate hand
pose classifications, which rarely occurs, considering
that the CNN is robust. Thus, we employ a temporal
filter that only changes command if the CNN changes
its hand pose classification for at least Q consecutive
frames. We set Q = 15, which results in half a sec-
ond delay. However, this parameter should be tuned
according to the nature of the application.

4 Experiments

In this section we describe the collected dataset of
hand poses images, made publicly available2. Then,

2http://www.im.ufal.br/professor/thales/ocdh/

we describe experiments to evaluate CNNs: we com-
pare the performance using binarized and segmented
image representations; we experiment several combi-
nations of hyper-parameters to identify robust CNN
configurations; and we evaluate the best CNN con-
figuration with temporal filtering in a regular robot
control task. Finally, to demonstrate the robustness
and feasibility of our proposed interface in real-time
robot control applications, we present results of ex-
periments with inexperienced users.

4.1 Open-Closed Depth Hand Dataset

We collected a large and diversified hand pose im-
age dataset composed by 160,000 samples from 20
individuals (15 men and 5 women). Individuals per-
formed the predefined hand poses: open and closed
hand. From each subject, we collected depth images
of the whole body, with 640×480 resolution. To im-
prove diversity, we asked each individual to vary its
global body pose as much as possible, and captured in
environments with different backgrounds. From the
depth images, we extracted and stored the cropped
hand. It is worth mentioning that, as the distance
from the hand to the sensor is variable, the cropped
image resolution varies greatly. Consequently, we re-
sampled all cropped images to the input resolution of
the neural network before the training stage (the same
occurring for real-time classification).

4.2 CNN Hyper-parameters and Image
Representations Experiments

In this experiment, we simultaneously evaluate both
the proposed image representations and the hyper-
parameters combinations. We performed an exhaus-
tive grid search through the subset of the hyper-
parameter space described in Section 3.3, for each
of the proposed image representations individually.
To evaluate the robustness of each configuration, we
applied cross-validation by considering 90% of the
dataset for training and 10% for testing.



Table 1: Configuration and accuracy of the best-performing
CNN architectures.

image C F S U N accuracy weights
bin 2 (3, 5) 32 2 (160, 160) 97,64% 564,194
bin 2 (5, 5) 32 2 (120, 80) 97,58% 347,466
bin 2 (5, 5) 32 2 (160, 160) 97,49% 467,426
bin 2 (3, 3) 32 2 (160, 80) 96,78% 642,290
bin 2 (3, 5) 16 2 (160, 80) 96,75% 275,778
bin 2 (5, 5) 32 2 (160, 80) 96,66% 454,386
bin 2 (3, 5) 32 2 (120, 80) 96,51% 419,914
bin 2 (5, 3) 32 2 (80, 80) 96,01% 272,802
bin 2 (5, 3) 32 1 (160, 0) 95,80% 522,562
bin 2 (3, 5) 32 2 (160, 80) 95,39% 551,154

Table 1 shows the 10 best CNNs found in this ex-
periment. The first relevant conclusion is that bina-
rized images achieved better results than segmented
images, which do not appear among the best results.
This is more clear when we observe the histograms
shown in Fig. 4, that represent the accuracy distribu-
tion of the experimented configurations for each im-
age representation separately. For segmented images,
accuracies range from 89% to 94%, while binarized
images accuracies range from 96% to 99%. More
importantly, we conclude that the best CNN archi-
tectures are very accurate to detect hand poses in all
experimented body poses. This is a relevant result,
as the user is expected to perform binary commands
while simultaneously controlling the robot arm posi-
tion in many distinct configurations.

By analyzing the hyper-parameters of the best ar-
chitectures, we note that there is a prevalence of 2
convolutional layers with 32 filters per layer, and
a diversity of values for the other evaluated hyper-
parameters. The best architecture is depicted in Fig. 3.
However, it is worth observing that all configurations
in Table 1 achieved a similar accuracy (always above
98%). Thus, we suggest that a smaller number of
trainable weights may be a relevant criteria to choose
an architecture among the best ones. However, hyper-
parameter calibration was still relevant to achieve sig-
nificantly better accuracies, as revealed in Fig. 4.

4.3 CNN Evaluation for Robot
Interaction

To further evaluate the best CNN architecture, we per-
formed experiments simulating the usual pick-and-
place task. We collected 10 performances of an indi-
vidual picking an object and placing it in another lo-
cation. It is expected that the user first places its con-
trolling hand (open) over the object; closes his hand to
grasp the object; moves his (closed) hand to another
location; and finally opens his hand to release the ob-
ject. Despite the simplicity of the task movements,

some poses are challenging for hand pose classifica-
tion, in particular when the user hand is pointing to-
wards the Kinect sensor. In such situations, images
from the hand poses are difficult to discriminate.

We evaluate and compare the robustness of the
CNN in each sequence when each frame is individu-
ally classified, and when temporal filtering is applied
(Section 3.4). We ignore frames from transitions be-
tween hand poses, since even a ground truth label is
ambiguous. We take into account a delay of 15 frames
to compare ground truth labels with labels classified
after temporal filtering, as this is expected. The eval-
uated sequences have an average of 204 frames.

The results shown in Table 2 reveal that tem-
poral filtering is indeed relevant to improve accu-
racy, achieving an excellent mean of 98.65%, against
94.73% when classification is performed in a per-
frame basis. In particular, per-frame classification
only outperformed the temporal filtering approach in
sequence 5. In that case, a single misclassified frame
in the 7th frame following a pose transition forced
the command transition to be delayed by 7 frames,
as it requires 15 consecutive similar classifications to
change the command. Consequently, this lead to 7 in-
correct results. However, we claim that this is not a
critical issue, as the consequence would be just a de-
lay in grasping or releasing an object. Is is also worth
noting the worst result (sequence 7). In that case, the
user performed challenging poses, as the ones shown
in Fig. 5, in which case the hand was closed, but with
the thumb straight. We believe that the CNN clas-
sification could be improved in these cases by pro-
viding additional training examples. Finally, we con-
clude that the proposed CNN approach is reliable for
real-world applications.

Table 2: Comparison between straightforward per-frame
classification and temporal filtering based classification: the
best trained CNN is employed to classify all frames of 10
sequences simulating a pick-and-place task. Accuracy is
defined as the ratio between correctly classified frames and
the total number of frames of each sequence.

Sequence Accuracy
Per-frame Temporal filter

1 95.97% 100%
2 97.34% 100%
3 92.63% 100%
4 98.09% 99.04%
5 99.56% 96.92%
6 99.09% 100%
7 81.89% 91.35%
8 95.93% 100%
9 92.39% 99.21%
10 94.43% 100%

Mean ± Std. Dev. 94.73%±5.14% 98.65%±2.73%



0.89 0.90 0.91 0.92 0.93 0.94 0.95
Accuracy

0

2

4

6

8

# 
of

 o
cc

ur
re

nc
es

(a) Histogram of accuracies of segmented images.
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(b) Histogram of accuracies of binarized images.

Figure 4: Histograms of accuracies of the experimented architectures. Horizontal axes represent accuracy intervals, and
vertical axes represent the number of architectures achieving the corresponding accuracies.

Figure 5: Challenging instances of hand poses: the user
closed the hand with the thumb straight.

(a) Task 1. (b) Task 2. (c) Task 3.

Figure 6: Pick-and-place experiments with the robotic arm.
Tasks 1, 2 and 3 are depicted in (a), (b) and (c), respectively.
Top-rows represent initial states whereas bottom-rows illus-
trate the final configuration to be achieved.

4.4 User Experiments with a Robot
Arm

We validate our method using a 6-DOF industrial-
grade robotic arm of model VP-6242, from Denso
Robotics3. It’s end-effector is a gripper from Robo-
tiq4 (2F-85). The goal of the Human-Robot Interface

3http://densorobotics.com/products/
vp-g-series

4https://robotiq.com/products/
adaptive-grippers

is teleoperation, allowing indirect manipulation of ob-
jects by positioning the gripper according to the user
hand position. Additionally, the gripper mimics the
user hand state (open or closed).

We define three simple experiments (cf. Fig. 6)
to evaluate the effectiveness of the interface: moving
a box from one specific position to another (task 1);
moving box 1 from a higher platform to a lower posi-
tion at the table, then moving box 2 from the table to
the higher platform (task 2); and pilling 2 boxes (on
top of each other) on a desired position (task 3).

To validate the method, we invited 10 inexpe-
rienced users (9 men and 1 woman in their mid-
twenties) to perform typical robot control tasks, al-
ways in the same order of execution of the tasks,
i.e. firstly task 1, then task 2, then task 3. None
of them had prior experience in controlling a robot
using body movements. We measured the execution
time that each subject needed to perform each of the
three tasks, as revealed in Table 3. Average and stan-
dard deviation are shown in the last row and in Fig. 7.
With a few exceptions, most tasks were successfully
accomplished by the individuals. Results also sug-
gest that users improve their performance for more
complicated tasks after executing some initial experi-
ments. More specifically, Fig. 7 reveals that, on aver-
age, task 3 was executed quicker than task 1, although
task 3 is clearly harder than task 1.

5 Conclusion and Future Work

We presented a real-time human-robot natural in-
teraction approach suitable for the teleoperation of
robotic arms. We collected a dataset of hand im-
ages (binary and segmented) and assessed different
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Figure 7: Execution times for the three pick-and-place ex-
periments with the robotic arm.

Table 3: Experimental results with inexperienced individu-
als. When a box is dropped, we count the execution as a
failure.

Subject Execution time (seconds)
Task 1 Task 2 Task 3

1 28 93 16
2 20 51 23
3 81 81 11
4 56 fail 22
5 82 180 40
6 44 67 20
7 18 64 fail
8 81 124 28
9 30 131 47

10 25 32 20
Mean ± Std. Dev. 47±27 91±46 25±11

model hyper-parameters, searching for a classifier
that best suited the problem. Then, we proposed a
model for position control, using only hand move-
ment, which was invariant to the user position and
orientation. We performed proof-of-concept experi-
ments with individuals with no previous training and
measured elapsed times during the execution of pick-
and-place tasks. The best hand pose classifier pre-
sented excellent recognition rates, which were im-
proved by our proposed temporal filter, and allowed
an intuitive user experience.

As future work, we plan to expand the number of
hand state classes. Different control modes can also
be analyzed, depending on the task context, such as
using two hands and their relative positions. We also
aim to investigate recurrent neural networks, since
the input data is inherently sequential. Alternative
human-robot movement mappings may also be topic
of research, including user-customizable interfaces.
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