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Abstract

The core of most registration algorithms aligns scan
data by pairs, minimizing their relative distance.
This local optimization must generally pass through
a validation procedure to ensure the global coher-
ence of the resulting alignments. This work intro-
duces an iterative framework to guarantee the global
coherence of the registration process. The iteration
alternates registration and reconstruction steps, in-
cluding alignments with the proper reconstructed
surface, until the alignment of all the scans con-
verges. The framework adapts to different contexts
by choosing which scans are aligned and which are
used for the reconstruction. This choice is based
on the alignment and reconstruction errors. Deriva-
tions of this framework are presented with a rough
automatic registration, increasing its robustness.

1 Introduction

Three-dimensional scanning builds virtual models
from several views of the same real object. Each
view or scangenerates a range image, i.e. a set of
points in 3D with its own coordinate system. The
registration process defines an optimal common co-
ordinate system for all the scans, which is a nec-
essary pre-processing of shape reconstruction algo-
rithms. This optimal alignment is usually deter-
mined by minimizing over all the rigid transforma-
tions a distance between the overlapping parts of the
scans. The basic optimization algorithm is the Iter-
ative Closest Point (ICP) [1, 2], which aligns each
pair of scans separately. Since the scans are views
of a unique rigid object, a global optimal alignment
must exist. However, the scanning process is prone
to noise [15], and the local minima must then be
checked for global consistency.

In this work, we propose to use and schedule in-
termediate reconstructed models to improve the reg-

Figure 1:Correcting alignment with the reconstruc-
tion: The rough, pair-wise positioning accumulates
errors (top left), which leads to false features at scan
boundaries in the reconstruction (top right). Re-
aligning with this reconstruction ensures the global
coherence (bottom left), significantly improving the
final reconstruction (bottom right).

istration process, extending the early work of Jinet
al. [24]. This reconstruction step provides a feed-
back on the current alignment quality and on how
to correct it for the final reconstruction: We align a
selected subset of the scans with the reconstruction,
generating a new alignment that is used for a subse-
quent reconstruction. The reconstruction generates
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(a) A pair of scans. (b) Spin-Images of correspond-
ing points on the two scans.

(c) Fine alignment with ICP. (d) Reconstructed model.

Figure 2:The basic elements of a reconstruction pipeline: from the several scan data in their own coordinate
systems(a), a local geometry descriptor is used to derive a rough position(b). This alignment is refined by
distance minimization(c). The registered scans are finally merged into a single surface(d). The color in(c)
codes the maximal distance between two scans in the view direction.

an updated model to align with, repeating the pro-
cess until this virtuous loop converges (Figure1).
The alternation of alignment and reconstruction on
different selection of scans adapts the general reg-
istration process to different contexts, such as dy-
namic or multi-resolution registration. In particu-
lar, it can improve the registration precision (ba-
sic framework), achieve delicate registration (over-
lapping maximization), improve the registration ro-
bustness (divergence correction), decrease the to-
tal execution time (multi-resolution) or further in-
tegrate the whole scanning/reconstruction process
(dynamic registration).

Related works. Usual automatic registration in-
volves two steps: initial positioning and refinements
of this alignment with global coherence validation.

The registration process searches for rigid trans-
formations, which are low-dimensional solutions (6
dimensions per scan), from high dimensional data
(3 dimensions per scan point). Using global opti-
mization [17, 21] or statistical analysis [19, 18], one
can directly align all the scans simultaneously. The
problem can also be considered partially by aligning
the scans pair-wise. To avoid working with all the
points of a scan at once, several techniques use local
descriptors that are invariant under rigid motions.
In this work, we use spin images [11] as a shape
descriptor, similarly to previous works [22, 4]. Ro-
bust descriptors can also be combined with the point
selection [5]. Further references on this initial posi-
tioning can be found in [3].

This positioning is generally refined by local
minimization algorithms, such as the classical Iter-
ated Closest Point (ICP) algorithm [1, 2]. This al-
gorithm has been improved in speed [23], accuracy

and robustness [12, 9, 6]. Further references on the
ICP variations can be found in [14].

In order to avoid local minima of the ICP, the
current alignment is checked for consistency. This
consistency usually comes either from a global op-
timization [21] or from a dependency graph of the
pair-wise alignments [17, 25, 22]. In this work, we
propose to use and schedule reconstructions steps
in the registration pipeline to guarantee this global
consistency.

The introduction of reconstruction in the registra-
tion process was first described in [24], which used
the pioneering reconstruction method of [8]. They
reconstruct the surface from all the aligned scans
during the registration, and align all the scans with
the reconstructed surface. Further constraints can
be added by aligning the scans with a pre-defined
model [10]. We propose here a generalization of
these ideas by scheduling which scan is aligned or
reconstructed at each step. Among the many surface
reconstruction methods, we test our framework with
two of them: the Multiple Partition of Unity implic-
its of [20], and the Poisson inversion of [13].

Contributions. This work introduces a general
framework for the use of reconstruction inside the
registration pipeline. This reconstruction provides
a global feedback on the quality of the alignment.
Since the reconstructed surface is generally a mesh
which approximates the scan, the original scans can
be aligned with it using robust algorithms such as
ICP derivatives. This leads to a globally coherent
registration without global optimization or consis-
tency graph. Moreover, the final registration is au-
tomatically optimized for the reconstruction, avoid-
ing false feature at misaligned regions [15].



Figure 3:Improvement of the global alignment us-
ing the reconstructed surface: misaligned scan data
(left) is realigned with the reconstruction to improve
the final alignment (right).

We incorporate this reconstruction step to a
framework built on three basic steps: 1) initial po-
sitioning, 2) local refinement of an alignment and
3) reconstruction (Section2). By scheduling these
steps and choosing on which scans they are ap-
plied, we open this registration framework to dif-
ferent contexts such as dynamic or multi-resolution
registration (Section3). We implement this frame-
work with simple algorithms for each step (Sec-
tion 4), significantly improving the global robust-
ness of the registration (Section5).

2 Framework Elementary Steps

In this section, we recall basic examples of scan
descriptors for the initial positioning, alignment
refinement and surface reconstruction (Figure2).
These elements are representative of the three el-
ementary steps of our registration framework.

Spin Image Descriptor. Spin-Images [11] de-
scribe the surface shape in a short range around a
reference point (Figure2(b)). Given a reference
point on the surface, the near-by surface points are
projected on its tangent plane, and encoded in a bi-
dimensional radial coordinate system that is invari-
ant to rigid transformations. The spin image at the
given point is the gray-scale image representing the
density of points in this coordinate system. From
the invariance of the system, corresponding points
in different meshes generate similar spin-images
even with clutter and occlusions.

Iterative Closest Point. The Iterative Closest
Point (ICP) algorithm [1, 2] iteratively refines an
initial alignment of two meshes (Figure2(c)). It
converges to a local minimum that can be the ex-
pected rigid transformation, depending on the ini-
tial condition. According to [14], the original algo-
rithm and its many variations are composed of six
stages: scan points’ selection, matching, correspon-
dences generation and filtering, error metric defini-
tion and minimization over the rigid transformation.
The rigid transformation that minimizes the error is
then applied to the scan points and the process is re-
peated until the rigid transformation is close enough
to the identity.

Surface Reconstruction. Surface reconstruction
consists in defining a continuous surface represen-
tation from a set of isolated points in space [8] (Fig-
ure 2(d)). Registration techniques are often used
as a pre-processing step for reconstruction [16]. In
this work, surface reconstruction serves as a global
check for the registration. We illustrate this con-
cept with one global-from-local and one global re-
construction algorithms: the Multiple Partition of
Unity (MPU) [20] and the Poisson surface recon-
struction [13]. The first one fits a tri-variate polyno-
mial on the scan points contained in each leaf of an
adapted octree, and blends these implicit represen-
tations by means of radial functions centered at the
near-by leaves. The second one builds the charac-
teristic function of the volume inside the surface. To
do so, it solves a global linear system whose equa-
tions match the pseudo-derivatives of this charac-
teristic function to the normal at each scan point,
generating one linear equation for each derivative
kernel at the center of an adapted octree.

Error Measures. In order to schedule in our
framework which scans are aligned and which are
reconstructed, some error measures are derived
from each step of the pipeline. The initial position-
ing error is measured by the geometric consistency
of spin image correspondences, i.e. the difference
of the distances between the correspondences on
each scan. The ICP error, i.e. average of distances
between correspondences measures, is used to esti-
mate the alignments accuracy. The reconstruction
error is estimated directly from the reconstruction
algorithm: the fitting error in each leaf for the MPU
case, or the linear solver error in the Poisson case.



Figure 4: Derivation of our framework for overlapping maximization on a complex model, whose upper
and lower parts are acquired in two separate sessions. Registering the models reconstructed separately from
the upper and lower parts increases the overlapping parts, improving the stability of the alignment.

3 Registration with Reconstruction
Framework

The usual registration pipeline starts with a rough
positioning of the scans, which are then aligned by
minimizing a distance between them. The aligned
scan is then piped into a reconstruction algorithm to
produce the final surface. We propose here a gen-
eral framework to improve the alignment using the
reconstructed surface, introducing a feedback in the
registration process (Figure3). This reconstructed
surface serves a triple purpose. First, it allows mea-
suring the quality of the registration of each single
scan by computing its distance to the reconstructed
surface. Second, aligning a scan with the recon-
struction improves the registration and optimizes it
for reconstruction. Third, this re-alignment guaran-
tees a global coherence of the registration without
global optimization, avoiding fake features due to
misalignment.

Basic framework. Our framework is built on top
of three basic steps:

1. Rough positioning of two distant meshes.
2. Fine alignment of two almost aligned meshes.
3. Reconstruction from several aligned meshes.

The reconstruction step serves to check and im-
prove the alignments in different manners, depend-
ing when and how it is scheduled within the frame-
work. For example, the iterative refinement of [24]
consists in alternating the two last steps with all the
scans at once, aligning them with the last recon-
structed mesh.

Note that in steps 1 and 2, one of the meshes to
be aligned can be the (partially) reconstructed sur-
face itself. This is the key to transform the local
problem into a global one. Furthermore, depending
on the scheduling, i.e., which meshes are aligned
and reconstructed at each stage, this framework
adapts registration to different usages. We com-
ment hereafter derivations of our framework in four
different registration contexts: overlapping maxi-
mization, dynamic registration, divergence correc-
tion and multi-resolution.

Overlapping maximization. Complex objects
are generally scanned in several sessions, typically
obtained by rotating the objects in front of the scan-
ner (Figure4). While the overlapping between two
consecutive scans of the same session is likely to be
high, the overlapping between the scans of two dif-
ferent sessions may be too small to find a stable op-
timal alignment. Moreover, the rotation angle used
inside a session provides a good relative initial po-
sitioning of the scans, while the alignment between
sessions is not givena priori. For example on Fig-
ure4, the upper and lower parts of the object over-
lap on a very small horizontal band. However, the
overlapping of all the scans of one session with all
the scans of another session is necessarily more ex-
tended. By reconstructing the aligned scan of each
session and aligning only the reconstructed meshes,
we benefit from this bigger overlapping.

More generally, we can choose at each step to re-
construct with all or only part of the scans, and align
pairs of scans, mixed pairs of scan/reconstructed
mesh, or only reconstructed meshes. This choice



Figure 5:Derivation of our framework for dynamic
registration. Partial reconstructions help the align-
ment, producing a complete reconstruction from
only 5 of the 7 scans. (Left) Reconstruction from
2 scans with the Poisson method already generates
the two rear legs. (Right) The 6th scan aligned with
the reconstruction from 5 scans.

may depend on the available processing time and
on the error of each pair-wise ICP, such as the one
described at Section2.

Dynamic registration. When registering on-the-
fly during the scanning process, or when computing
the initial alignment incrementally, the scan added
last must be aligned with all the previous ones (Fig-
ure 5). This process can be costly and unstable,
in particular if this last scan overlaps with only a
few of the previous ones. Since the reconstructed
mesh should contain the details of each scan, align-
ing the new scan with it maximizes the overlapping
area, reducing the number of incorrect correspon-
dences. We can thus derive our framework to align
the scan added last with the reconstruction of the
previous one. The reconstruction can be performed
after each scan addition, or when the error between
the scans added last and the current reconstruction
is bigger than a threshold, which means the aligned
scans and the reconstruction are geometrically in-
consistent. To improve the stability, the initial scans
can be periodically re-aligned with the reconstruc-
tion.

Moreover, the registration of the previous scans
can be improved by regularly scheduled steps of
pair-wise alignments. This strategy is best used in
real-time data acquisition for 3D reconstruction.

Divergence correction. Our general framework
is an iterative process that converges depending on
the initial alignment. When starting from a bad po-
sitioning, the process may oscillate between wrong
alignments. This can be easily checked by track-
ing the transformations applied to a specific scan at

each stage and the final error after a fixed number of
ICP iterations (Figure8). If these transformations
remain far from the identity or if the error does not
diminish, the scan can be re-aligned from scratch,
using the rough positioning with the mesh recon-
structed from all but this scan.

The convergence of our general framework can
be improved by alternating global and local align-
ments: aligning all the scans with the reconstructed
mesh (global) and aligning pairs of scans in se-
quence (local). Each alignment procedure returns
an error (cf Section2), which can be used to correct
eventual divergent behaviors.

Multi-resolution. The resolution of the recon-
structed mesh can be adjusted, either directly in
the reconstruction algorithm tuning or explicitly
by mesh simplification and refinement operations.
Aligning a low-resolution reconstructed mesh with
decimated scans produces a quick and coarse reg-
istration. Increasing the resolutions then incre-
mentally improves the alignments. (Figure6).
This coarse-to-fine registration fills the gap between
the rough positioning of distant meshes and the
ICP alignment, reducing considerably the execution
time. Moreover, this strategy improves the robust-
ness of the registration on very noisy objects, avoid-
ing local noise to be considered as features. This
way, we obtain good results with only2 or 3 differ-
ent resolutions. For example, using two resolutions
of 900 and 7000 points for each of the 6 scans, the
total execution time for registration of the low res-
olution, reconstruction of the high one and align-
ing with the reconstructed surface is 47 seconds,
while the conventional registration procedure lasts
256 seconds.

4 Implementation

The overall implementation of our framework is
simple provided the basic elements described in
Section2, since meshes are the natural represen-
tation of both the original scans and the recon-
structed surfaces. We implement the basic steps
of the framework by using an automatic pair-wise
alignment method for the first step, point-to-point
ICP for the second step. For the third step, we use
the available implementations of the MPU and Pois-
son reconstructionsas is.



Model # # Frame- Posit- Recons- ICP # Error
views points -work -ioning -truction iter.

×103 secs. secs. secs ×10−4

bunny 12 13 corrective 14 MPU 1.6 8.1 9 2.0
head 5 16 basic 41 MPU 1.8 7.2 9 1.8
hand 6 21 mutlires 7.0 MPU 3.5 3.1 2 9.2
horse 7 22 dynamic 4.6 Poi 3.3 4.8 2 3.2
lady bot 8 54 overlap 322 Poi 125 0 0 2.0
lady top 12 174 overlap 660 Poi 1340 75 2 1.5
lady 2 228 overlap 72.5 Poi 2486 0 0 2.0
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Figure 7: Some experiments on real objects (head, lady) and virtual models (horse, bunny, hand). The
graph maps the maximal error from the number of iterations. The timings are averages per iteration, where
one iteration corresponds to an alignment and a reconstruction step in the different frameworks. The error
corresponds to the maximal ICP error of the last step.

The initial alignment of the first step can be ei-
ther manual, deduced from the calibrated scanner
position, or automatic. For this last case, we use
an automatic alignment strategy similar to [22, 9].
Using the terminology of [3], it consists in select-
ing feature points based on their curvature in each
scan, representing them by spin images and rank-
ing matching images by the difference of their pix-
els. Groups of matching are valid if the distance be-
tween them inside each scan is similar. Valid groups
can be discarded if they induce a too small overlap.
In our experiments, the bin size of the spin-images
took values between 2 and 4, and the spin-image
width between 10 and 15.

The ICP variant used can be described in the ter-
minology of [14] by: all points selection, match-
ing based on Euclidean closest point using kd-trees,
filtering sets of correspondences according to a dis-
tance threshold, squared error metric and minimiza-
tion using quaternions following [7]. Finally, to
emphasize the generality of our framework, we
use two different reconstruction techniques, respec-
tively [20, 13].

5 Experiments

We consider two sets of examples: artificially gen-
erated scans such as thehorsemodel (Figure5),
where the correct alignment is the identity, and
scanned objects such as theheadand thelady (Fig-
ures1, 2 and4) to test the robustness to real scanner
noise. We forced extreme cases with wrong initial
alignments on an artificial scan of thebunny(Fig-
ure8), or with flat overlapping area on the low res-
olution handmodel (Figure6).

Precision. In the different frameworks proposed,
we obtain a significant improvement compared to
a single alignment/reconstruction step involving all
the scans. Detailed results on the illustrations of
this work are reported on Figure7. Observe that,
for small or decimated models, the several recon-
struction steps count only for a fraction of the to-
tal time, while it gets a higher proportion on big-
ger models. Even with initial alignment far from
the correct position (Figure8) the registration con-
verges in a few iterations. Except for the extreme
case in Figure5, results obtained using MPU and
Poisson reconstructions are similar.



Figure 8:Derivation of our framework for divergence correction. This method improves the robustness of
the global registration, and minimizes the impact of bad initial alignments: The error induced by artificially
rotating one scan by 60 degrees is progressively corrected in 3 reconstruction/alignment iterations (left).
Without the divergence correction, the ICP fits the scan to another position due to its symmetry (right).

Limitations. The proposed framework is very ef-
ficient in term of precision and adaptation to diverse
contexts. However, since we did not optimize the
reconstruction and alignment steps for consecutive
calls, the overhead in execution time is still sig-
nificant on big models without the multiresolution
strategy. The resolution settings of the reconstruc-
tion have an impact on this execution time, and also
on the quality of the alignment, in particular since
we use point-to-point ICP. Except for the multires-
olution of Figure6, we let the resolution of all the
reconstructions to their default parameters.

6 Conclusions

In this work, we propose a novel framework for reg-
istration, inserting and scheduling a reconstruction
step to improve the final alignment of the scans.
Variations of this scheduling adapt this framework
to different contexts. These reconstruction steps
provide a feedback to intermediate alignments and
guarantees the global coherence of the alignment.
They further optimize the alignment for the final re-
construction, avoiding fake features at the frontier
of misaligned scans. This framework extends the
work of Jinet al. [24], adapting global registration
to different contexts. Moreover, it gives a simple
way for registration to benefit from the recent ad-
vances in surface reconstruction.
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