
UNIVERSIDADE FEDERAL DE ALAGOAS
INSTITUTO DE COMPUTAÇÃO

CIÊNCIA DA COMPUTAÇÃO

LUIZ MATHEUS DE ALENCAR CARVALHO

MUTANTES EQUIVALENTES EM SISTEMAS CONFIGURÁVEIS: UM ESTUDO
EMPÍRICO

MACEIÓ - AL
2018

Luiz Matheus de Alencar Carvalho

Mutantes Equivalentes em Sistemas Configuráveis: Um estudo empírico

Este trabalho foi aceito para publicação no evento
Workshop on Variability Modelling of Software-
Intensive Systems com o título Equivalent Mutants
in Configurable Systems: An Empirical Study, ano
2017, pelos autores Luiz Carvalho, Marcio Augusto,
Márcio Ribeiro, Leonardo Fernandes, Mustafa
Al-Hajjaji, Rohit Gheyi, Thomas Thüm e foi aqui
replicado para fins de substituição do trabalho de
conclusão de curso por artigo científico nos termos
da Norma Complementar CC-IC 04/15.

Orientador: Prof. Dr. Márcio de Medeiros
Ribeiro

Coorientador: Prof. Me. Leonardo Fernan-
des Mendonça de Oliveira

Maceió - AL
2018

Luiz Matheus de Alencar Carvalho

Mutantes Equivalentes em Sistemas Configuráveis: Um estudo empírico

Este trabalho foi aceito para publicação no evento
Workshop on Variability Modelling of Software-
Intensive Systems com o título Equivalent Mutants
in Configurable Systems: An Empirical Study, ano
2017, pelos autores Luiz Carvalho, Marcio Augusto,
Márcio Ribeiro, Leonardo Fernandes, Mustafa
Al-Hajjaji, Rohit Gheyi, Thomas Thüm e foi aqui
replicado para fins de substituição do trabalho de
conclusão de curso por artigo científico nos termos
da Norma Complementar CC-IC 04/15.

Data de Aprovação: 23/01/2018

Banca Examinadora

Prof. Dr. Márcio de Medeiros Ribeiro
Universidade Federal de Alagoas

Instituto de Computação
Orientador

Prof. Me. Leonardo Fernandes Mendonça de Oliveira
Instituto Federal de Alagoas

Coordenadoria de Informática
Coorientador

Prof. Dr. Alessandro Fabricio Garcia
Pontifícia Universidade Católica do Rio de Janeiro

Departamento de Informática
Examinador

Prof. Dr. Flávio Mota Medeiros
Instituto Federal de Alagoas

Coordenadoria de Informática
Examinador

Prof. Dr. Rodrigo de Barros Paes
Universidade Federal de Alagoas

Instituto de Computação
Examinador

Science never solves a problem without creating
ten more.

George Bernard Shaw

RESUMO

Teste de mutação é uma técnica de transformação de programas que tem por objetivo avaliar
a qualidade dos casos de teste estimando sua capacidade de detectar falhas artificialmente
injetadas. Os custos de utilizar teste de mutação são elevados, dificultado seu uso na indústria.
Pesquisas prévias mostraram que aproximadamente um-terço dos mutantes gerados em sistemas
simples são equivalentes. Em sistemas configuráveis, um conjunto de operadores que focam em
diretivas de pré-processamento (e.g., #ifdef) foram propostas. Contudo, não existem estudos
que investiguem se mutantes equivalentes ocorrem com esses operadores. Para realizar essa
investigação, fornecemos uma ferramenta que implementa os operadores de mutação propostos
em trabalhos anteriores e conduzimos um estudo empírico usando 30 arquivos C de 6 sistemas de
escala industrial. Em particular, fornecemos exemplos de mutantes equivalentes e informações
detalhadas, como quais operadores de mutação geram esses mutantes e com que frequência
eles ocorrem. Nossos resultados preliminares mostram que aproximadamente 45% dos mutantes
gerados são equivalentes. Consequentemente, os custos de testes podem ser drasticamente
reduzidos se a comunidade evidenciar técnicas eficientes para evitar esses mutantes equivalentes.

Palavras-chave: Teste de Mutação. Sistemas Configuráveis. Pré-processador.

ABSTRACT

Mutation testing is a program-transformation technique that evaluates the quality of test cases by
assessing their capability to detect injected artificial faults. The costs of using mutation testing are
usually high, hindering its use in industry. Previous research has reported that roughly one-third
of the mutants generated in single systems are equivalents. In configurable systems, a set of
mutation operators that focus on preprocessor directives (e.g., #ifdef) has been proposed.
However, there is a lack of existing studies that investigate whether equivalent mutants do
occur with these operators. To perform this investigation, we provide a tool that implements the
aforementioned mutation operators and we conduct an empirical study using 30 C files of six
industrial-scale systems. In particular, we provide examples of equivalent mutants and detailed
information, such as which mutation operators generate these mutants and how often they occur.
Our preliminary results show that nearly 45% of the generated mutants are equivalent. Hence,
testing costs can be drastically reduced if the community comes up with efficient techniques to
avoid these equivalent mutants.

Keywords: Mutation Testing. Configurable Systems. Preprocessor.

LIST OF FIGURES

Figure 1 – Example of totally equivalent mutant. All configurations generated by the
mutant (AICC) are the same when compared to all configurations generated
by the original code. 18

Figure 2 – Example of partially equivalent mutant. One corresponding configuration is
different, i.e., [PROTO]. 19

Figure 3 – Partially and totally equivalent mutants. 26
Figure 4 – Examples of applying some mutation operators. 26

LIST OF TABLES

Table 1 – Mutation operators implemented in #MUTAF. 23

Table 2 – Open-source configurable systems we use in our study. 24
Table 3 – Number of partially and totally equivalents mutants for configurable systems. 27
Table 4 – Number of partially equivalents, totally equivalents, generated mutants, and

valid mutants per mutation operator. 28

SUMMARY

1 INTRODUCTION . 14

2 EQUIVALENT MUTANTS IN CONFIGURABLE SYSTEMS 16

3 MUTANT GENERATOR . 20

3.1 #MUTAF . 20

3.2 Mutation Operators . 20

4 EMPIRICAL STUDY . 24

4.1 Settings . 24

4.2 Results and Discussion . 25

4.3 Threats to Validity . 28

5 RELATED WORK . 30

6 CONCLUSIONS . 32

REFERENCES . 33

14

1 INTRODUCTION

Mutation testing (DEMILLO et al., 1978) is a program-transformation technique that

injects artificial faults to check whether the existing test cases can detect them. The quality of

mutation testing largely depends on the used mutation operators. Ideally, mutation operators

represent realistic faults, i.e., they mimic faults that programmers usually make. Recently,

researchers have proposed to apply mutation testing for highly-configurable systems (AL-

HAJJAJI et al., 2016a; ARCAINI et al., 2015; HENARD et al., 2014b; LACKNER; SCHMIDT,

2014; PAPADAKIS et al., 2014; REULING et al., 2015). Most of the existing approaches mutate

feature models with aim of generating an effective set of products or to assessing the quality of

the generated ones (ARCAINI et al., 2015; HENARD et al., 2014b; LACKNER; SCHMIDT,

2014; PAPADAKIS et al., 2014; REULING et al., 2015). Since a large percentage of the faults

occur in the domain artifacts (i.e., source code) (ABAL et al., 2014), mutating the source code

of configurable systems has a huge potential for fault detection. While conventional mutation

operators can be used, special mutation operators are needed to mimic variability-related faults.

Thus, mutation operators that focus on preprocessor-based directives (e.g., #ifdef) have been

proposed (AL-HAJJAJI et al., 2016a). Evaluating these operators showed that they can simulate

variability-related faults (AL-HAJJAJI et al., 2016a).

Mutation testing suffers from high costs (JIA; HARMAN, 2011). One kind of mutant

increases such costs: the equivalent mutant (FERNANDES et al., 2017). An equivalent mutant is

useless because it shows the same behavior as the original program (BUDD; ANGLUIN, 1982;

JIA; HARMAN, 2011; MADEYSKI et al., 2014). Recent researches have found that the rate

of equivalent mutants in single systems might lie between 4% and 39% (MADEYSKI et al.,

2014). In this context, it is unknown how often equivalent mutants occur for industrial-scale

configurable systems and which mutation operators produce most equivalent mutants.

To evaluate whether equivalent mutants are indeed a problem for configurable systems,

we have implemented a tool, called #MUTAF, to mutate #ifdefs in C code. In particular, we

have implemented 10 out of 13 mutation operators proposed in prior work (AL-HAJJAJI et al.,

2016a). The implemented operators make changes in the variability models, in the domain artifact

(i.e., source code) and in the mapping between models and domain artifact. Then, we use the tool

to generate mutants in 30 files of six preprocessor-based industrial-scale systems: OpenSSL, Vim,

lighttpd, nginx, nano, and gnuplot. To identify equivalent mutants, we take the original files and

mutate them. Then, we preprocess both files with all macros (i.e., #define directives) combina-

15

tions to yield all configurations. Afterwards, to check whether the corresponding configurations

are equivalent, we use compiler optimization and diff techniques (BALDWIN; SAYWARD,

1979; OFFUTT; CRAFT, 1994; PAPADAKIS et al., 2015; KINTIS et al., 2017). In case all

original configurations are equivalent to the corresponding mutant configurations, we define

this mutant as totally equivalent. In case only a strict, but non-empty subset of configurations is

equivalent, we define the mutant as partially equivalent.

In particular, we present how often the total and partial equivalent mutants occur for

configurable systems. As a result, we investigate whether equivalent mutants in configurable

systems are a problem, i.e. whether researchers need to avoid them. In addition, we investigate

which mutation operators lead to more equivalent mutants than other operators. This information

can be helpful for testers, because they can avoid applying these operators or use them carefully.

Our results reveal that 7.9% and 38.0% of the generated mutants are partially and totally

equivalent, respectively. Regarding the mutation operators, we find that the ones that add and

remove #ifdef conditions generate more totally equivalent mutants.

Furthermore, we consider invalid mutants when a mutant does not compile in any

configuration and valid mutants when a mutant compiles at least one configuration. In this

context, our empirical study also shows how often invalid mutants occurred.

In summary, this paper provides the following contributions:

• A mutant generator tool that considers mutation operators for configurable systems; and

• An empirical study to present numbers of partially and totally equivalent mutants in C

preprocessor-based configurable systems, i.e., OpenSSL, Vim, lighttpd, nginx, nano, and

gnuplot. In addition, we provide numbers about the operators that lead to more equivalent

mutants than others and numbers on invalid and valid mutants per operator.

16

2 Equivalent Mutants in Configurable Systems

In the context of configurable systems, several approaches exploited mutation testing to

generate an effective set of products (ARCAINI et al., 2015; HENARD et al., 2014b) or to assess

the quality of a set of generated products (REULING et al., 2015). For this purpose, several

mutation operators have been proposed to mutate configurable systems. However, most of the

existing ones focus mainly on feature models (ARCAINI et al., 2015; HENARD et al., 2014b;

REULING et al., 2015; LACKNER; SCHMIDT, 2014). In general, the existing conventional

mutation operators in single-system engineering can also be used to mutate configurable systems

by applying these operators to the generated products or to the original source code. Nevertheless,

these mutation operators may not able to mimic faults that are caused due to variability (ABAL

et al., 2014). Thus, mutation operators that take the variability into account may cause faults in

configurable systems that cannot be triggered using the conventional operators. Recently, muta-

tion operators for preprocessor-based configurable systems have been proposed (AL-HAJJAJI

et al., 2016a). In this work, we consider the aforementioned operators to generate mutants in

configurable systems.

The costs of mutation testing are usually high due to the large amount of possible

mutants (JIA; HARMAN, 2011). Kintis et al. (KINTIS et al., 2017) show that, for some cases,

more than a third of these mutants for single systems are equivalents. The equivalent mutant

problem has been a barrier that prevents mutation testing from being more widely used. To detect

if a program and one of its mutants are equivalent is undecidable (BUDD; ANGLUIN, 1982). As

a result, the detection of equivalent mutants alternatively may have to be carried out by humans,

but manually checking mutant equivalence is error-prone (people judged equivalence correctly

in about 80% of the cases (ACREE, 1980)) and time consuming (approximately 15 minutes per

equivalent mutant (SCHULER; ZELLER, 2013)).

In mutation testing for configurable systems, mutating a configurable program S yields a

configurable mutant S ′. To analyze whether the mutant is equivalent, we need to compare each

configuration yielded by S against each corresponding configuration produced by S ′ for each

valid configuration.1

Given this context, we now explain the problem of equivalent mutants in configurable

systems and introduce the concepts of totally and partially equivalent mutants.

We assume a semantics function Sc that takes a configurable system S and a configuration
1 Valid configuration in this context means compilable or specified in artifacts such as Feature Models and

Configuration Knowledge

17

c to generate the respective product. Two products Sc and S ′
c are equivalent, denoted by S ′

c = Sc,

if S ′
c preserves the observable behavior of Sc. Otherwise, they are not equivalent denoted by

S ′
c 6= Sc. Furthermore, we define function wf that takes a product Sc as input and indicates

whether Sc is well-formed or not:

wf(Sc) =

true if Sc has no compilation errors

false if Sc has compilation errors

Given a configurable mutant M derived by applying a mutation operator o to a configurable sys-

tem S (i.e., M = o(S)) and the set of configurations of S as CS , we define that the configurable

mutant M is totally equivalent if and only if

(∀c ∈ CS : wf(Mc) → Mc = Sc) ∧

(∃c′ ∈ CS : wf(Mc′)).

Similarly, a configurable mutant M is partially equivalent if and only if

(∃c ∈ CS : wf(Mc) ∧ Mc 6= Sc) ∧

(∃c′ ∈ CS : wf(Mc′) ∧ Mc′ = Sc′).

Notice the following two examples that illustrate the definition presented. Figure 1 shows

a code snippet from the vim configurable system.2 At the top, we illustrate the original version of

the code and a mutant yielded by using the AICC (Adding #ifdef Condition around Code)

mutation operator (AL-HAJJAJI et al., 2016a) (see the added lines, i.e., 138 and 157). In this

example, the mutant is totally equivalent, as all valid configurations generated by using this

mutant are equivalent to all configurations generated by the original. Observing from the tester’s

perspective this mutant is useless, since no configuration produced a mutated program with a

behavior different from the original program. Then all configurations can be discarded.

Figure 2 illustrates a mutant generated by using the RFIC (Removing Feature of #ifdef

Condition) mutation operator (AL-HAJJAJI et al., 2016a). The mutant removed part of the

#ifdef condition (see line 15 at the top-left corner of Figure 2). In this second example, we

have a partially equivalent mutant, as only three out of four valid configurations are equivalent,

i.e., [], [FEAT_CRYPT], and [PROTO, FEAT_CRYPT]. From the point of view of

the tester, this mutant may be interesting to be tested, but only for the configuration that produces

behavior different from the original program. In this case, only the equivalent configuration need

to be discarded.
2 <https://github.com/vim/vim/blob/edf3f97ae2af024708ebb4ac614227327033ca47/src/crypt_zip.c>

https://github.com/vim/vim/blob/edf3f97ae2af024708ebb4ac614227327033ca47/src/crypt_zip.c

18

13 #include	"vim.h"	

139 void	crypt_zip_decode(cryptstate_T	*state,	char_u	*from	…)	{

 154 				{	zs->keys[0]	=	…	};

156 }

13 #include	"vim.h"	

139 void	crypt_zip_decode(cryptstate_T	*state,	char_u	*from	…)	{

 154 				{	zs->keys[0]	=	…	};

156 }

AICC

13 #include	"vim.h" []

[PROTO]

13 #include	"vim.h"	

139 void	crypt_zip_decode(cryptstate_T	*state,	char_u	*from	…)	{

 154 				{	zs->keys[0]	=	…	};

156 }

[FEAT_CRYPT]

13 #include	"vim.h"	

139 void	crypt_zip_decode(cryptstate_T	*state,	char_u	*from	…)	{

 154 				{	zs->keys[0]	=	…	};

156 }

[PROTO, FEAT_CRYPT]

13 #include	"vim.h"	

15 #if	defined(FEAT_CRYPT)	||	defined(PROTO)	

 …

77 #define	UPDATE_KEYS_ZIP(keys,	c)	{	\	keys[0]	=	…	;	\	}	

 …

139 void	crypt_zip_decode(cryptstate_T	*state,	char_u	*from	…)	{

154 				UPDATE_KEYS_ZIP(zs->keys,	to[i]	=	from[i]	^	temp);

156 }

158 #endif

Original

13 #include	"vim.h"	 []

[PROTO]

[FEAT_CRYPT]

13 #include	"vim.h"	

139 void	crypt_zip_decode(cryptstate_T	*state,	char_u	*from	…)	{

 154 				{	zs->keys[0]	=	…	};

156 }

[PROTO, FEAT_CRYPT]

13 #include	"vim.h"	

139 void	crypt_zip_decode(cryptstate_T	*state,	char_u	*from	…)	{

 154 				{	zs->keys[0]	=	…	};

156 }

13 #include	"vim.h"	

15 #if	defined(FEAT_CRYPT)	||	defined(PROTO)	

 …

77 #define	UPDATE_KEYS_ZIP(keys,	c)	{	\	keys[0]	=	…	;	\	}	

 …

138 #ifdef	UPDATE_KEYS_ZIP

139 void	crypt_zip_decode(cryptstate_T	*state,	char_u	*from	…)	{

154 				UPDATE_KEYS_ZIP(zs->keys,	to[i]	=	from[i]	^	temp);

156 }

157 #endif

158 #endif

Figure 1 – Example of totally equivalent mutant. All configurations generated by the mutant
(AICC) are the same when compared to all configurations generated by the original
code.

Analogously to single systems, equivalent mutants increase costs in configurable systems.

This means that executing the test suite against the configurations of the original configurable

system will lead to the same results as executing the test suite against the corresponding confi-

gurations of the mutant. This way, the equivalent mutant problem is even more challenging for

configurable systems, as we need to deal with it in many different configurations.

In this paper, we present an empirical study to raise the awareness of equivalent mutants

in configurable systems. In particular, we focus on totally and partially equivalent mutants, as

the ones we present in this chapter.

19

13 #include	"vim.h"	

13 #include	"vim.h"	

15 #if	defined(FEAT_CRYPT)	||	defined(PROTO)	

 …

77 #define	UPDATE_KEYS_ZIP(keys,	c)	{	\	keys[0]	=	…	;	\	}	

 …

139 void	crypt_zip_decode(cryptstate_T	*state,	char_u	*from	…)	{

154 				UPDATE_KEYS_ZIP(zs->keys,	to[i]	=	from[i]	^	temp);

156 }

158 #endif

13 #include	"vim.h"	

15 #if	defined(FEAT_CRYPT)	

 …

77 #define	UPDATE_KEYS_ZIP(keys,	c)	{	\	keys[0]	=	…	;	\	}	

 …

139 void	crypt_zip_decode(cryptstate_T	*state,	char_u	*from	…)	{

154 				UPDATE_KEYS_ZIP(zs->keys,	to[i]	=	from[i]	^	temp);

156 }

158 #endif

Original

13 #include	"vim.h"	 []

[PROTO]

13 #include	"vim.h"	

139 void	crypt_zip_decode(cryptstate_T	*state,	char_u	*from	…)	{

 154 				{	zs->keys[0]	=	…	};

156 }

[FEAT_CRYPT]

13 #include	"vim.h"	

139 void	crypt_zip_decode(cryptstate_T	*state,	char_u	*from	…)	{

 154 				{	zs->keys[0]	=	…	};

156 }

[PROTO, FEAT_CRYPT]

13 #include	"vim.h"	

139 void	crypt_zip_decode(cryptstate_T	*state,	char_u	*from	…)	{

 154 				{	zs->keys[0]	=	…	};

156 }

RFIC

13 #include	"vim.h"	 []

[PROTO]

[FEAT_CRYPT]

13 #include	"vim.h"	

139 void	crypt_zip_decode(cryptstate_T	*state,	char_u	*from	…)	{

 154 				{	zs->keys[0]	=	…	};

156 }

[PROTO, FEAT_CRYPT]

13 #include	"vim.h"	

139 void	crypt_zip_decode(cryptstate_T	*state,	char_u	*from	…)	{

 154 				{	zs->keys[0]	=	…	};

156 }

Figure 2 – Example of partially equivalent mutant. One corresponding configuration is different,
i.e., [PROTO].

20

3 Mutant generator

We have created #MUTAF to implement the mutation operators proposed by (AL-HAJJAJI

et al., 2016a). In this chapter, we show the mutation operators that have been implemented.

Moreover, we discuss how #MUTAF works and we exemplify the mutation operators with real

cases from OpenSSL, Vim, lighttpd, nginx, nano, and gnuplot. The examples show the original

code on the left side and the mutants on the right side.

3.1 #MUTAF

The #MUTAF is a mutant generator. The mutation operators are applied to C preprocessor

(CPP) and they were implemented as described and exemplified in Section 3.2. #MUTAF uses

the srcML1 as a parser. It may parses a C file considering C preprocessor (CPP) directives. The

srcML converts the original source code and returns an XML file with statements and CPP

directives marked. After, #MUTAF parses the generated XML and applies mutations operators.

For each generated mutant, #MUTAF calls the srcML to transform the mutant from XML to C

code.

3.2 MUTATION OPERATORS

Remove Conditional Feature Definition (RCFD). The RCFD removes a #define

inside the #ifdef, #ifndef, and #if block. The following mutant was generated from the

file popupmnu.c contained in the Vim project.

i f d e f i n e d (FEAT_INS_EXPAND)
| | d e f i n e d (PROTO)

d e f i n e PUM_DEF_HEIGHT 10
e n d i f

i f d e f i n e d (FEAT_INS_EXPAND)
| | d e f i n e d (PROTO)

e n d i f

Add Condition to Feature Definition (ACFD). The ACFD adds an #ifdef block or #ifndef

block around the #define. The following mutant was generated from the file history.c

contained in the nano project.
1 www.srcml.org

21

i f n d e f SEARCH_HISTORY

d e f i n e SEARCH_HISTORY
" s e a r c h _ h i s t o r y "

e n d i f

i f n d e f SEARCH_HISTORY
i f d e f POSITION_HISTORY
d e f i n e SEARCH_HISTORY

" s e a r c h _ h i s t o r y "
e n d i f
e n d i f

Ifdef Condition around Code (AICC). The AICC adds a #ifdef block or #ifndef

block around a code fragment. We decided to add #ifdef or #ifndef just around function to

avoid exponential growth since this operator can be added to some code fragment. The following

mutant was generated from the file history.c contained in the nano project.

void h i s t o r y _ i n i t (void)
{

. . .
}

i f d e f SEARCH_HISTORY
void h i s t o r y _ i n i t (void)
{

. . .
}
e n d i f

Adding Feature to ifdef Condition (AFIC). The AFIC changes the #ifdef conditions

or #ifndef conditions adding a new dependency. We decided to implement this operator with

the addition of the && operator followed by a feature, already present in the file, in the #if

expression. We chose this decision project to avoid exponential growth. The following mutant

was generated from the file json.c contained in the Vim project.

i f d e f i n e d (FEAT_EVAL)
| | d e f i n e d (PROTO)

. . .

e n d i f

i f d e f i n e d (FEAT_EVAL)
| | d e f i n e d (PROTO)

&& d e f i n e d (USING_FLOAT_STUFF)
. . .

e n d i f

Remove ifdef Condition (RIDC). The RIDC removes #ifdef, #ifndef, #if, #else,

and #endif. However, it does not remove the block content. The following mutant was genera-

ted from the file tables.c contained in the gnuplot project.

i f n d e f l i n t
s t a t i c char ∗RCSid () { . . . }

e n d i f
s t a t i c char ∗RCSid () { . . . }

22

Removing Feature of ifdef Condition (RFIC). The RFIC removes a feature inside the

#if condition. Alike AFIC, we have implemented to remove just one feature from #if to avoid

exponential growth. The following mutant was generated from the file json.c contained in the

Vim project.

i f d e f i n e d (FEAT_EVAL)
| | d e f i n e d (PROTO)

. . .
e n d i f

i f d e f i n e d (FEAT_EVAL)

. . .
e n d i f

Replacing ifdef Directive with ifndef Directive (RIND). O RIND replaces the #ifdef

by #ifndef. The following mutant was generated from the file chunk.c contained in the

lighttpd project.

i f d e f __COVERITY__
umask (0 6 0 0) ;

e n d i f

i f n d e f __COVERITY__
umask (0 6 0 0) ;

e n d i f

Replacing ifndef Directive with ifdef Directive (RNID). The RNID replaces the #ifndef

by #ifdef, in other words, the opposite of RIND. The following mutant was generated from

the file s3_enc.c contained in the OpenSSL project.

i f n d e f OPENSSL_NO_COMP
COMP_METHOD ∗comp ;

e n d i f

i f d e f OPENSSL_NO_COMP
COMP_METHOD ∗comp ;

e n d i f

Removing Complete ifdef Block (RCIB). The RCIB removes #ifdef, #ifndef and

#if blocks. Unlike RIDC, it removes the entire #ifdef block. The following mutant was

generated from the file ssl_sess.c contained in the OpenSSL project.

d e s t−>e x t . hos tname = NULL;
i f n d e f OPENSSL_NO_EC
d e s t−>e x t . e c p o i n t f o r m a t s =NULL;
d e s t−>e x t . s u p p o r t e d g r o u p s =NULL;
e n d i f
d e s t−>e x t . t i c k = NULL;

d e s t−>e x t . hos tname = NULL;

d e s t−>e x t . t i c k = NULL;

Moving Code around ifdef Blocks (MCIB). The MCIB moves code fragments that are

before a block of #ifdef, #ifndef or #if to after the block (#endif). Additionally, it

moves the code fragment that is after the #endif to before #ifdef, #ifndef, or #if. The

following mutant was generated from the file prompt.c contained in the nano project.

23

i n p u t = g e t _ k b i n p u t (. . .) ;
i f n d e f NANO_TINY
i f (i n p u t == KEY_WINCH)

re turn KEY_WINCH;
e n d i f

i f n d e f NANO_TINY
i f (i n p u t == KEY_WINCH)

re turn KEY_WINCH;
e n d i f
i n p u t = g e t _ k b i n p u t (. . .) ;

Remove Feature from Model (RFDM). The RFDM deletes a feature from a model. This

operator has not been implemented because it is not applied in #ifdef condition. Furthermore,

it is coupled to the variability model.

Modify Feature Dependency in Model (MFDM). The MFDM modifies a dependency

of the feature in variability model. This operator has not been implemented for the same reason

of the RFDM.

Conditionally Applying Conventional Operator (CACO). The CACO includes some

traditional mutation operator. Therefore, all available through C-language mutation testing tools.

This operator is very wide, then CACO needs to be implemented in tools more refined as

proposed by (AL-HAJJAJI et al., 2017a). In this way, we have not implemented it.

The mutation operators implemented in the #MUTAF are summarized in Table 1.

Table 1 – Mutation operators implemented in #MUTAF.

Mutation Operator Acronyms Description
Remove Conditional Feature
Definition RCFD Removes a feature definition.

Add Condition to Feature
Definition ACFD

Adds an #ifdef or #ifndef condition
around an existing define statement.

Adding #ifdef Condition
Around Code AICC

Adds an #ifdef or #ifndef condition
around a code fragment.

Adding Feature to #ifdef
Condition AFIC

Manipulates an #ifdef condition
by inserting an additional logical
dependency to the expression.

Remove #ifdef Condition RIDC
Deletes an #ifdef or #ifndef
condition.

Removing Feature of #ifdef
Condition RFIC

Removes the occurrence of a
feature from an #ifdef expression.

Replacing #ifdef Directive
with #ifndef Directive RIND

Changes an existing #ifdef
directive to an #ifndef directive.

Replacing #ifndef Directive
with #ifdef Directive RNID

Changes an #ifndef directive
to an #ifdef directive.

Removing Complete #ifdef
Block RCIB

Deletes an entire #ifdef, #ifndef,
and #if block.

Moving Code Around #ifdef
Blocks MCIB

Moves a certain code fragment
around an #ifdef block.

24

4 Empirical Study

To better understand the problem of equivalent mutants in configurable systems, we
perform an empirical study. In what follows, we present the settings of our study (Section 4.1),
the results and discussion (Section 4.2), and threats to validity (Section 4.3).

4.1 SETTINGS

In our study, we intend to answer the following research questions:

• RQ1: How often do totally and partially equivalent mutants occur for configurable sys-
tems?

• RQ2: Which mutation operators lead to more equivalent mutants than other operators?

• RQ3: Which mutation operators lead to more invalid mutants?

Answering RQ1 is important to understand the equivalent mutant problem for configura-
ble systems. Answering RQ2 and RQ3 will help (i) testers to be aware of costly operators and
thus avoid them; and (ii) researchers to know which mutation operators need to be improved.
To answer these questions, we select 30 C files of six industrial-scale configurable systems that
contain preprocessor directives. We list the systems we use in Table 2. To make our analysis
feasible, we randomly select files with at most six different feature macros.

We execute #MUTAF on each file to generate the mutants. We then generate all configura-
tions available in both the original files as well as the mutated ones, and perform a comparison
as illustrated in Figures 1 and 2. In case a certain configuration does not compile in the original
code, we do not analyze such configuration in any mutant. In addition, if the mutant does not
compile for a certain configuration, we disregard this configuration from our numbers. For
example, suppose a mutant with four configurations. If three are equivalents and one does not
compile, we count this mutant as totally equivalent. This definition may seem strange to some
researchers because by having a configuration different from the original, this mutant could
not be called totally equivalent. However, we are observing from the tester’s perspective. In
this case, the mutant is completely useless and is not suitable for use in mutation testing. Not

Table 2 – Open-source configurable systems we use in our study.

System Domain LOC
OpenSSL TSL and SSL protocol 269,621

Vim Text editor 312,201
lighttpd Web server 48,043
nginx Http server 120,459
nano Text editor 37,822

gnuplot Command-line driven graphing utility 89,127

25

counting mutants that do not compile is in accordance to mutation testing previous research, as
they produce invalid mutations (JUST, 2014).

To detect equivalent mutants, we rely on compiler optimizations for checking equivalence
(BALDWIN; SAYWARD, 1979; OFFUTT; CRAFT, 1994; KINTIS et al., 2017). So, a mutant is
equivalent to the original program if, after the transformations made by compile optimization,
they end up with the same object code. Notice that this approach is sound in the sense that
two equal binaries mean that the programs have the same behavior. However, we do not detect
equivalent mutants with the same behavior, but with different object codes. This leads us to have
no false positives. But, this approach is definitely not free to have false negatives.

We compile the configurations with the gcc1 compiler. This compiler has many levels
of optimization. In this study, we decided to setup the compiler to use the option -O3. This
option has been used by previous studies to detect equivalent mutants (KINTIS et al., 2017;
PAPADAKIS et al., 2015). Then, we check whether two binaries are equivalent by using the
diff2 utility with the flag “--binary.” We execute our study on a Linux kernel 4.9.0 , gcc
6.3.0-11, and diff 3.5-3.

4.2 RESULTS AND DISCUSSION

In this section, we present the results and answer our research questions. All results of
our study are available online: <https://lzmths.github.io/tcc/>. Figure 3 shows the distribution
of percentages of the partially and the totally equivalent mutants for each analyzed system. We
observe that large percentages of the mutants are totally equivalent, especially for configurable
systems gnuplot and nginx, with median values 63.6% and 76.5%, respectively. Table 3 presents
the results in more detail and answer RQ1. For each file, we illustrate the number of preprocessor
macros, the number of valid mutants (the ones that compile), and the number of partially
equivalent and totally equivalent mutants.

For example, when considering the crypt_zip.c file (Vim), #MUTAF generated 48

valid mutants. This file has 3 preprocessor macros which give us 8 possible configurations,
without considering information from potential constrains (e.g., feature model). Notice that
18.8% and 62.5% of the mutants are partially and totally equivalent, respectively. The examples
we present in Figures 1 and 2 are from the crypt_zip.c file.

In general, the number of totally equivalent mutants is higher than the number of partially
equivalent mutants. In particular, 7.9% and 38.0% of the mutants are partially and totally
equivalent, respectively. In this sense, these results answer our RQ1 and evidence the importance
of creating technical solutions to avoid equivalent mutants in configurable systems and thus
reduce costs.

To answer RQ2, we refer to Table 4. The mutation operators that contribute most with
totally equivalent mutants are AFIC, RFIC, RCFD, and RIDC. On the other hand, RCIB is the
1 <https://gcc.gnu.org/>
2 <https://www.gnu.org/software/diffutils/>

https://lzmths.github.io/tcc/
https://gcc.gnu.org/
https://www.gnu.org/software/diffutils/

26

Figure 3 – Partially and totally equivalent mutants.

one that most contributes to partially equivalent mutants. To better understand the results, we
refer to the code snippets presented in Figure 4. We now proceed by explaining and discussing
the results from the operators that caused the highest and lowest numbers.

int	below_row;

int	redo_cound	=	0;

#if	defined(FEAT_QUICKFIX)

win_T	*pvwin;

#endif

int	below_row;

#if	defined(FEAT_QUICKFIX)

win_T	*pvwin;

#endif

int	redo_cound	=	0;

Original

MCIB

size_t	m;

#ifdef	___COVERITY___

umask(0600);

#endif

size_t	m;

Original

RCIB

#ifdef	HAVE_PCRE_H

size_t	i;

const	char	*errptr;

int	erroff;

#endif

size_t	i;

const	char	*errptr;

int	erroff;

Original

RIDC

Unused variables

#ifdef	HAVE_PCRE_H

pcre_keyvalue	*kv;

#endif

…

#ifdef	HAVE_PCRE_H

kv	=	kvb->kv[kvb->used];

#endif

Original

RIDC
#ifdef	HAVE_PCRE_H

pcre_keyvalue	*kv;

#endif

…

kv	=	kvb->kv[kvb->used];

Undeclared variable

#define	BUFFER_SIZE	64

…

#if	defined(WIN32)

…

#endif

Original

AFIC
#define	BUFFER_SIZE	64

…

#if	defined(WIN32)	&&

				defined(BUFFER_SIZE)

…

#endif

(A) (D)(B) (C) (E)

Figure 4 – Examples of applying some mutation operators.

AFIC adds a feature to #ifdef condition. RFIC, on the other hand, removes. In
case the original code contains, for example, #if defined(WIN32), AFIC may yield a
mutant with the following: #if defined(WIN32) && defined(BUFFER_SIZE) (Fi-
gure 4(A)). Here, when comparing the original code with the mutant, only one configuration
will be different, i.e., when we enable WIN32 and disable BUFFER_SIZE. In our evaluation,
this only one “different” configuration (such as enabling A and disabling B) did not compile
in the majority of the cases. Because we do not count the configurations that do not compile,
we ended up with many totally equivalent mutants. The same situation happens for the RFIC
mutation operator. AFIC and RFIC generated 92.0% and 77.8% of totally equivalent mutants,
respectively.

27

Table 3 – Number of partially and totally equivalents mutants for configurable systems.

Project File Macros Valid
Mutants

Partially Eq.
Mutants

Totally Eq.
Mutants

openssl

crypto/rand/rand_lib.c 4 98 4 4.1% 11 11.2%
ssl/s3_enc.c 3 35 4 11.4% 7 20.0%
ssl/ssl_sess.c 4 168 19 11.3% 12 7.1%
ssl/bio_ssl.c 1 6 3 50.0% 1 16.7%
ssl/ssl_cert.c 3 25 2 8.0% 4 16.0%

vim

src/hashtab.c 1 86 1 1.2% 53 61.6%
src/crypt_zip.c 3 48 9 18.8% 30 62.5%
src/json.c 6 66 0 0.0% 34 51.5%
src/nbdebug.c 4 22 6 27.3% 15 68.2%
src/popupmnu.c 4 87 2 2.3% 47 54.0%

lighttpd

src/buffer.c 3 220 17 7.7% 20 9.1%
src/chunk.c 1 125 6 4.8% 2 1.6%
src/fdevent_libev.c 1 28 0 0.0% 0 0.0%
src/fdevent_poll.c 2 30 2 6.7% 13 43.3%
src/keyvalue.c 1 7 0 0.0% 3 42.9%

nginx

core/ngx_rwlock.c 3 24 2 8.3% 16 66.7%
core/ngx_string.c 3 10 3 30.0% 3 30.0%
mail/ngx_mail.c 3 17 0 0.0% 13 76.5%
http/ngx_http_upstream_rr.c 4 56 0 0.0% 48 85.7%
core/ngx_inet.c 5 73 0 0.0% 58 79.5%

nano

src/move.c 2 16 2 12.5% 6 37.5%
src/chars.c 4 72 9 12.5% 25 34.7%
src/prompt.c 5 77 21 27.3% 28 36.4%
src/browser.c 6 47 8 17.0% 12 25.5%
src/history.c 4 93 2 2.2% 56 60.2%

gnuplot

src/boundary.c 1 65 7 10.8% 35 53.8%
src/breaders.c 4 93 8 8.6% 69 74.2%
src/gpexecute.c 4 54 6 11.1% 14 25.9%
src/tables.c 4 11 0 0.0% 7 63.6%
src/alloc.c 6 54 1 1.9% 47 87.0%

Total 59 1812 144 7.9% 689 38.0%

RIDC removes the #ifdef. In case the #ifdef is encompassing declarations of varia-
bles and functions (see Figure 4(B)), they will be unused after applying RIDC and preprocessing
the code with the macro disabled (e.g., HAVE_PCRE_H). Unused variables and functions are
detected and properly removed during the compiler optimization, yielding equivalent mutants.
However, when applying RIDC, we may also have compilation errors, i.e., undeclared variables
and functions (Figure 4(C)). As configurations that do not compile are not present in our numbers,
we increase the odds of having totally equivalent mutants (e.g., for four configurations, three are
equivalent and one does not compile). RIDC generated 84.2% of totally equivalent mutants.

MCIB generated a moderate number of totally equivalent mutants (32.0%), especially in
cases where the operator moved variable declarations around #ifdef blocks (see Figure 4(D)).

28

Table 4 – Number of partially equivalents, totally equivalents, generated mutants, and valid
mutants per mutation operator.

File Generated
Mutants

Valid
Mutants

Percentage of
Valid Mutants

Partially
Equivalent

Totally
Equivalent

AFIC 50 50 100.00% 4 8.0% 46 92.0%
RFIC 9 9 100.00% 2 22.2% 7 77.8%
RIDC 253 234 92.49% 20 8.5% 197 84.2%
RCFD 18 9 50.00% 0 0.0% 8 88.9%
ACFD 134 120 89.55% 10 8.3% 93 77.5%
MCIB 272 247 90.81% 21 8.5% 79 32.0%
AICC 918 875 95.31% 44 5.0% 223 25.5%
RCIB 154 121 78.57% 37 30.6% 22 18.2%
RNID 54 52 96.30% 0 0.0% 7 13.5%
RIND 111 96 86.49% 6 6.3% 7 7.3%
Total 1973 1813 91.89% 144 7.9% 689 38.0%

AICC generated a few number of totally equivalent mutants. In general, the totally equivalent
cases happened when the operator adds the #ifdef with a macro that has already been defined
by using the #define directive (see the example presented in Figure 1).

RIND and RNID generated a few number of totally equivalent mutants (7.3% and 13.5%,
respectively). The main reason is that the configurations tend to be different when compared to
the original code due to the different blocks that are added and removed after preprocessing the
code.

RCIB generated a moderate number of partially equivalent mutants, i.e., 18.2%. For
example, when removing the entire block encompassed by #ifdef ___COVERITY___, the
configuration where ___COVERITY___ is disabled is equivalent (Figure 4(E)). On the other
hand, in case such macro is enabled, we have a non-equivalent configuration. This balance
between equivalent and non-equivalent configurations increases the odds of having partially
equivalent mutants (30.6%).

To answer RQ3, we refer to Table 4. Invalid mutants do not compile in any configuration.
The opposite, a valid mutant compiles at least one configuration and mutation operator that
contribute most to invalid mutants is RCFD. The operators that most generated valid mutants
were AFIC and RFIC. In general, the proportion of valid mutants is high (91.8%).

RCFD generated half of the invalid mutants. This occurs because it removes #define
that are used to define constants in the code. AFIC and RFIC generated all valid mutants because
they add or remove a feature in an #if condition. Whenever this feature is enabled, then the
expression is equivalent to the original expression.

4.3 THREATS TO VALIDITY

The low number of configurable systems we used represents a threat to external validity.
To alleviate this threat, we selected projects of different sizes and domains. We intend to conduct

29

further experiments in future using different sizes of configurable systems in order to generalize
the outcomes of this paper.

Our implementation of #MUTAF is a threat to internal validity. Because there is no formal
specification of the mutation operators, the implementation may vary according to the tool.
For example, for some mutation operators we decided to avoid an exponential growth of the
number of mutants: AICC (Adding #ifdef Condition Around Code) only applies #ifdef and
#ifndef around functions. AFIC (Adding Feature to #ifdef Condition) only adds a logical
dependency to the expression in case the added feature is defined in the same file. However,
for other mutation operators, we have expanded the scope: RIDC and RCIB do not work only
with #ifdef. They also consider preprocessors with #ifndef, #if, and #else condition.
To check whether the tool is creating the mutants as expected, we sampled five mutants of each
mutation operator and manually analyzed them. Moreover, the gcc compiler and the diff
utility may also have faults. Nevertheless, we minimize this threat by relying on those systems
that are heavily tested, deployed, and used in practice.

In this paper, we use the brute-force (all possible configurations) in files with at most
six macros. It represents a threat because many configurable systems have a dedicated building
tool that filters the possible configurations before performing compilation (eg.: kconfig). Our
intention was to assess whether equivalent mutants represent a problem for configurable systems.
Notice that this approach would not scale in case we decide to analyze files with many more
macros.

The aforementioned manual analysis also represents a threat. We alleviate such a threat
by double checking the questionable cases with a second researcher.

In our evaluation, we rely on compiler optimizations to check equivalence. Despite sound
(no false positives), this technique may have false negatives. In this context, our results are
conservative and represent a lower bound.

30

5 Related work

Recently, several mutation testing approaches have been proposed for highly configurable
systems (AL-HAJJAJI et al., 2016a; ARCAINI et al., 2015; HENARD et al., 2014b; REULING
et al., 2015; AL-HAJJAJI et al., 2017a; DEVROEY et al., 2016; DEVROEY et al., 2014).
Al-Hajjaji et al. (AL-HAJJAJI et al., 2016a) propose mutation operators for preprocessor-based
configurable systems and show that applying these operators can cause real faults. They aim
with these operators to make changes that cause variability-related faults. In our work, we
implemented the majority of those mutation operators and use them to generate mutants. We
considered these generated mutants in our evaluation.

Arcaini et al. (ARCAINI et al., 2015) propose a fault-based approach that considers
finding faults in feature models. For this purpose, they propose a set of mutation operators
that mutate feature models. These mutated feature models are tested against configurations
that are generated from the original ones. Reuling et al. (REULING et al., 2015) present a
fault-based approach that generates an effective set of products with respect to the ability of
finding faults. To achieve their goal, they propose a set of atomic and complex mutation operators
that mutates feature diagrams. Similarly, Henard et al. (HENARD et al., 2014b) propose two
mutation operators to alter the propositional formula of feature models. Using these operators,
they generate a set of configurations that has the ability to detect the mutated feature models.
Papadakis et al. (PAPADAKIS et al., 2014) report that considering fault-based approaches
(i.e., mutation testing) to generate a set of products is more effective than generating products
with combinatorial interaction testing with respect to the ability of detecting faults. Lackner
et al. (LACKNER; SCHMIDT, 2014) assess the testing quality of configurable systems by
exploiting mutation testing to measure the capability of detecting faults. With their approach,
they consider model-based mutation operators. The aforementioned approaches (ARCAINI et
al., 2015; HENARD et al., 2014b; LACKNER; SCHMIDT, 2014; PAPADAKIS et al., 2014;
REULING et al., 2015) consider only mutation operators on the feature model level.

However, Abal et al. (ABAL et al., 2014) report that most of the reported faults are located
in the domain artifacts (i.e., source code). In addition, they do not consider any techniques that
may reduce the mutation testing costs. In our work, we mutate the source code of configurable
systems. Furthermore, we investigate how often the equivalent mutants occur in configurable
systems and how many equivalent mutants are generated by each mutation operator.

Al-Hajjaji et al. (AL-HAJJAJI et al., 2017a) propose to reduce the cost by decreasing the
possibility of generating equivalent mutants. For this purpose, they propose to combine static
analysis and T-wise testing to indicate in which code segments the mutation operators should
be applied. However, further experiments are required to evaluate the effectiveness of their
approach. In addition, Reuling et al. (REULING et al., 2015) propose two strategies to reduce
the number of mutants, namely mutation selection and higher-order mutation. With mutation
selection, they select a set of operators randomly. Furthermore, they also exploit the similarity
notion in operators selection, where they consider dissimilar operators to be selected. However,

31

these strategies can be applied to the implemented mutation operators in future to reduce the
mutation testing cost.

For highly configurable systems, several approaches have been proposed to select a set of
products to be tested (JOHANSEN et al., 2012; AL-HAJJAJI et al., 2016b; PERROUIN et al.,
2010; HENARD et al., 2014a). For example, Johansen et al. (JOHANSEN et al., 2012), Al-Hajjaji
et al. (AL-HAJJAJI et al., 2016b), Perrioun et al. (PERROUIN et al., 2010) propose T-wise testing
approaches to sample configurable systems. Henard et al. (HENARD et al., 2014a) suggest an
alternative approach to T-wise testing by proposing a search-based approach that selects a set of
products. Our approach can be used to assess the quality of the generated products with respect
to the capability to find faults. Furthermore, numerous product prioritization approaches have
been proposed to increase the fault detection rate by ordering products under test (AL-HAJJAJI
et al., 2017b; SÁNCHEZ et al., 2014; LITY et al., 2017). These prioritization approaches can be
applied to prioritize the generated mutants, which may increase the testing effectiveness.

In previous work, Braz et al. (BRAZ et al., 2016) proposes a change-centric approach
that aims to compile only the configurations that affected by the changes. This previous approach
can be used to avoid the equivalent mutants by considering only configurations that affected by
changes as a result of applying the mutation operators.

In single systems, as surveyed by Jia and Harman (JIA; HARMAN, 2011), efforts have
been made to reduce the mutation testing costs. For example, some approaches propose that
selecting only small percentages of mutants are sufficient to achieve a high accuracy of mutation
score (BUDD, 1980; ZHANG et al., 2013). However, applying these techniques of the single-
system engineering may achieve promising results in the context of configurable systems. In a
recent work (FERNANDES et al., 2017), we propose an approach to avoid generating equivalent
mutants. In particular, we propose rules that are required to be applied during mutants generation.
Therefore, the aforementioned approach may be also considered in future in the configurable
systems to reduce the mutation testing cost.

32

6 Conclusions

We empirically assess whether the equivalent mutant in configurable systems is a problem.
In particular, we distinguish between partially and totally equivalent mutants in configurable
systems. In our evaluation, we have implemented a tool, called #MUTAF, to mutate #ifdefs
in C code. Then we execute our tool in OpenSSL, Vim, lighttpd, nginx, nano, and gnuplot.
To check whether the mutants are indeed equivalents, we rely on compiler optimizations and
diff techniques. Our results revealed that 38.0% of the mutants are totally equivalent, i.e., no
configuration generated by these mutants are useful for the mutation testing, and 7.9% of the
mutants are partially equivalents, i.e., only a few configurations would be useful for testing.
We also found that mutation operators that add or remove #ifdef conditions generate totally
equivalent mutants more often. Our results bring evidence that equivalent mutants is a non-
negligible problem for configurable systems. In addition, our evaluation is important to make
testers aware of costly mutation operators. Last but not least, our findings are important to
improve the mutation operators we explored in this work.

As future work we intend to investigate duplicated mutants. Duplicated mutants happen
when two mutants are equivalent to each other. In this case, only one of them is useful. In
addition, we intend to improve #MUTAF to: (i) automatically execute the test suite, (ii) compute
the mutation score, and (iii) integrate techniques to avoid those kinds of equivalent and duplicated
mutants.

33

REFERENCES

ABAL, I.; BRABRAND, C.; WASOWSKI, A. 42 variability bugs in the linux kernel: A
qualitative analysis. In: ACM. Proceedings of the 29th ACM/IEEE International Conference
on Automated Software Engineering. New York, NY, USA, 2014. p. 421–432.

ACREE, J. A. T. On Mutation. Tese (Doutorado) — Georgia Institute of Technology, 1980.

AL-HAJJAJI, M.; BENDUHN, F.; THÜM, T.; LEICH, T.; SAAKE, G. Mutation operators
for preprocessor-based variability. In: Proceedings of the Tenth International Workshop on
Variability Modelling of Software-intensive Systems. New York, NY, USA: ACM, 2016. p.
81–88.

AL-HAJJAJI, M.; KRIETER, S.; THüM, T.; LOCHAU, M.; SAAKE, G. Incling: Efficient
product-line testing using incremental pairwise sampling. In: Proceedings of the International
Conference on Generative Programming: Concepts Experience. New York, NY, USA:
ACM, 2016. p. 144–155. ISBN 978-1-4503-4446-3.

AL-HAJJAJI, M.; KRüGER, J.; BENDUHN, F.; LEICH, T.; SAAKE, G. Efficient mutation
testing in configurable systems. In: Proceedings of the International Workshop on
Variability and Complexity in Software Design. Piscataway, NJ, USA: IEEE, 2017. (VACE
’17), p. 2–8. ISBN 978-1-5386-2803-4.

AL-HAJJAJI, M.; THÜM, T.; LOCHAU, M.; MEINICKE, J.; SAAKE, G. Effective
Product-Line Testing Using Similarity-Based Product Prioritization. Software & Systems
Modeling, 2017. To appear.

ARCAINI, P.; GARGANTINI, A.; VAVASSORI, P. Generating tests for detecting faults in
feature models. In: IEEE. 8th International Conference on Software Testing, Verification
and Validation (ICST). Piscataway, NJ, USA, 2015. p. 1–10.

BALDWIN, D.; SAYWARD, F. Heuristics for Determining Equivalence of Program
Mutations. [S.l.], 1979.

BRAZ, L.; GHEYI, R.; MONGIOVI, M.; RIBEIRO, M.; MEDEIROS, F.; TEIXEIRA, L. A
change-centric approach to compile configurable systems with #ifdefs. In: Proceedings of the
International Conference on Generative Programming: Concepts and Experiences. New
York, NY, USA: ACM, 2016. p. 109–119. ISBN 978-1-4503-4446-3.

BUDD, T.; ANGLUIN, D. Two notions of correctness and their relation to testing. Acta
Informatica, v. 18, n. 1, p. 31–45, 1982.

BUDD, T. A. Mutation Analysis of Program Test Data. Tese (Doutorado) — Yale University,
New Haven, CT, USA, 1980.

DEMILLO, R.; LIPTON, R.; SAYWARD, F. Hints on test data selection: Help for the practicing
programmer. Computer, v. 11, n. 4, p. 34–41, 1978.

DEVROEY, X.; PERROUIN, G.; CORDY, M.; PAPADAKIS, M.; LEGAY, A.; SCHOBBENS,
P.-Y. A variability perspective of mutation analysis. In: Proceedings of the International
Symposium on Foundations of Software Engineering. New York, NY, USA: ACM, 2014. p.
841–844. ISBN 978-1-4503-3056-5.

34

DEVROEY, X.; PERROUIN, G.; PAPADAKIS, M.; LEGAY, A.; SCHOBBENS, P.-Y.;
HEYMANS, P. Featured model-based mutation analysis. In: Proceedings of the International
Conference on Software Engineering. Piscataway, NJ, USA: IEEE, 2016. p. 655–666. ISBN
978-1-4503-3900-1.

FERNANDES, L.; RIBEIRO, M.; CARVALHO, L.; GHEYI, R.; MONGIOVI, M.; SANTOS,
A.; CAVALCANTI, A.; FERRARI, F.; MALDONADO, J. C. Avoiding useless mutants. In:
Proceedings of the 16th International Conference on Generative Programming: Concepts
Experience. New York, NY, USA: ACM, 2017. p. 187–198.

HENARD, C.; PAPADAKIS, M.; PERROUIN, G.; KLEIN, J.; HEYMANS, P.; TRAON, Y. L.
Bypassing the Combinatorial Explosion: Using Similarity to Generate and Prioritize T-Wise Test
Configurations for Software Product Lines. IEEE Transaction Software Engineering, v. 40,
n. 7, p. 650–670, 2014. ISSN 0098-5589.

HENARD, C.; PAPADAKIS, M.; TRAON, Y. L. Mutation-based generation of software
product line test configurations. In: International Symposium on Search Based Software
Engineering. [S.l.]: Springer, 2014. p. 92–106.

JIA, Y.; HARMAN, M. An analysis and survey of the development of mutation testing. IEEE
Transactions on Software Engineering, v. 37, n. 5, p. 649–678, 2011.

JOHANSEN, M. F.; HAUGEN, Ø.; FLEUREY, F. An Algorithm for Generating T-Wise
Covering Arrays from Large Feature Models. In: Proceedings of the International
Software Product Line Conference. New York, NY, USA: ACM, 2012. p. 46–55. ISBN
978-1-4503-1094-9.

JUST, R. The major mutation framework: Efficient and scalable mutation analysis for java.
In: ACM. Proceedings of the International Symposium on Software Testing and Analysis.
New York, NY, USA, 2014. p. 433–436.

KINTIS, M.; PAPADAKIS, M.; JIA, Y.; MALEVRIS, N.; TRAON, Y. L.; HARMAN, M.
Detecting trivial mutant equivalences via compiler optimisations. IEEE Transactions on
Software Engineering, PP, n. 99, p. 1–1, 2017.

LACKNER, H.; SCHMIDT, M. Towards the assessment of software product line tests: a
mutation system for variable systems. In: Proceedings of the 18th International Software
Product Line Conference: Companion Volume for Workshops, Demonstrations and
Tools-Volume 2. New York, NY, USA: ACM, 2014. p. 62–69.

LITY, S.; AL-HAJJAJI, M.; THüM, T.; SCHAEFER, I. Optimizing Product Orders Using
Graph Algorithms for Improving Incremental Product-line Analysis. In: Proceedings of the
International Workshop on Variability Modelling of Software-intensive Systems. New
York, NY, USA: ACM, 2017. p. 60–67. ISBN 978-1-4503-4811-9.

MADEYSKI, L.; ORZESZYNA, W.; TORKAR, R.; JOZALA, M. Overcoming the equivalent
mutant problem: A systematic literature review and a comparative experiment of second order
mutation. IEEE Transactions on Software Engineering, v. 40, n. 1, p. 23–42, 2014.

OFFUTT, A. J.; CRAFT, W. M. Using compiler optimization techniques to detect equivalent
mutants. Software Testing, Verification and Reliability, v. 4, n. 3, p. 131–154, 1994.

35

PAPADAKIS, M.; HENARD, C.; TRAON, Y. L. Sampling program inputs with mutation
analysis: Going beyond combinatorial interaction testing. In: Software Testing, Verification
and Validation. New York, NY, USA: IEEE, 2014. p. 1–10.

PAPADAKIS, M.; JIA, Y.; HARMAN, M.; TRAON, Y. L. Trivial compiler equivalence: A
large scale empirical study of a simple, fast and effective equivalent mutant detection technique.
In: IEEE International Conference on Software Engineering. Piscataway, NJ, USA: IEEE,
2015. p. 936–946.

PERROUIN, G.; SEN, S.; KLEIN, J.; BAUDRY, B.; TRAON, Y. L. Automated and scalable
t-wise test case generation strategies for software product lines. In: Proceedings of the
International Conference on Software Testing, Verification and Validation. Washington:
IEEE, 2010. p. 459–468.

REULING, D.; BüRDEK, J.; ROTäRMEL, S.; LOCHAU, M.; KELTER, U. Fault-based
product-line testing: Effective sample generation based on feature-diagram mutation. In:
Proceedings of the the International Conference on Software Product Line. New York, NY,
USA: ACM, 2015. p. 131–140. ISBN 978-1-4503-3613-0.

SÁNCHEZ, A. B.; SEGURA, S.; RUIZ-CORTÉS, A. A Comparison of Test Case Prioritization
Criteria for Software Product Lines. In: Proceedings of the International Conference on
Software Testing, Verification and Validation. Washington: IEEE, 2014. p. 41–50.

SCHULER, D.; ZELLER, A. Covering and uncovering equivalent mutants. Software Testing,
Verification and Reliability, v. 23, n. 5, p. 353–374, 2013.

ZHANG, L.; GLIGORIC, M.; MARINOV, D.; KHURSHID, S. Operator-based and random
mutant selection: Better together. In: Proceedings of the International Conference on
Automated Software Engineering. Piscataway, NJ, USA: IEEE, 2013. p. 92–102.

	Folha de Rosto
	Folha de Aprovação
	Epígrafe
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Equivalent Mutants in Configurable Systems
	Mutant generator
	#mutaf
	Mutation Operators

	Empirical Study
	Settings
	Results and Discussion
	Threats to Validity

	Related work
	Conclusions
	REFERENCES

